Aro-teorio

El Vikipedio, la libera enciklopedio

Aroteorio (aŭ arteorio) estas branĉo de matematiko kaj komputiko kreita ĉefe de la germana matematikisto Georg Cantor fine de la 19-a jarcento. Ĝi komence estis disputata, sed nuntempe iĝis grava en la fundamentteorio por difini bazajn konceptojn kiel nombro.

Komence oni evoluigis la naivanintuician arteorion, kiun oni povas difini jene:

La bazaj konceptoj de arteorio estas aroj kaj membreco. Aro estas kolekto de objektoj, nomitaj membroj (aŭ elementoj) de la aro. La membroj povas esti ekzemple nombroj, funkcioj, aŭ aroj mem. Oni skribas la arojn per la ondkrampoj { kaj }. Do {1,2} estas aro, kaj ankaŭ {1,2,3,4,...} (la infinita aro de la naturaj nombroj, nomata N), kaj eĉ {2,3,N}, do la membroj ne devas esti de la sama klaso. Ankaŭ la malplena aro {} estas konsiderata aro.

Al tiaj aroj oni povas apliki diversajn operaciojn, kiel la kunaĵon kaj la komunaĵon.

Tamen montriĝis ke, se oni aplikas ĉiujn operaciojn senlime, aperas paradoksoj kiel la Rusela paradokso. Por solvi tiujn problemojn, oni rekonstruis la arteorion uzante aksioman metodon.

Aksioma arteorio

La aksiomoj por la arteorio nuntempe plej ofte uzataj estas nomataj la Zermelo-Fraenkel-aksiomoj. Verdire, la aksiomoj estas ĉenoj de logikaj simboloj. Ĉi sube aperas iliaj "tradukoj" al natura lingvo:

  1. Aksiomo de etendo: Du aroj estas samaj se kaj nur se ili havas la samajn membrojn.
  2. Aksiomo de malplena aro: Ekzistas aro sen iuj ajn membroj. Oni skribas ĝin kiel {}.
  3. Aksiomo de parigo: Se x kaj y estas aroj, tiam {x,y} estas aro, aro kiu havas nur x kaj y kiel siajn membrojn.
  4. Aksiomo de kunaĵo: Por ĉiu aro x ekzistas aro y tiel ke la membroj de y estas precize la membroj de la membroj de x.
  5. Aksiomo de senfineco: Ekzistas aro x tiel ke {} estas membro de x, kaj se y estas membro de x, tiam ankaŭ la kunaĵo y U {y} estas membro de x.
  6. Aksiomo de apartigo: Se x estas aro kaj P(y) estas predikato, tiam ekzistas subaro de x kies membroj estas precize tiuj, por kiuj P(y) estas vera.
  7. Aksiomo de anstataŭigo: Se x estas aro, kaj P(y,z) difinas bildigon (do P(y,z) kaj P(y,w) entenas z=w) tiam ekzistas aro enhavanta precize la bildojn de la membroj de x.
  8. Aksiomo de potenca aro: Ĉiu aro havas potencan aron. Do, por ĉiu aro x ekzistas aro y tiel ke la membroj de y estas ĉiuj subaroj de x.
  9. Aksiomo de reguleco: Ĉiu ne-malplena aro x havas membron y tiel ke x kaj y estas disaj aroj.
  10. Aksiomo de elekto: Se x estas aro de reciproke disaj ne-malplenaj aroj, ekzistas aro y kiu enhavas precize unu membron de ĉiu membro de x.

La aksiomoj de reguleco kaj de elekto restas disputataj de malmultaj matematikistoj.

Operacioj per aroj

Kunaĵo de du aroj

Kunigo

La kunaĵo de du aroj A kaj B konsistas el ĉiuj elementoj, kiuj estas en A, en B aŭ en ambaŭ. La operacio nature ĝeneraliĝas al pli ol du aroj; ĝi estas ĝeneraligebla ankaŭ al nefinie da aroj. Ĝi estas komuteca kaj asocieca. Oni notas ĝin per la kunigo-signo (∪), kiu similas al pelveto aŭ al literu "U".

Komunaĵo de du aroj

Komunigo

La komunaĵo de du aroj A kaj B konsistas el ĉiuj elementoj, kiuj estas kaj en A kaj en B. La operacio nature ĝeneraliĝas al pli ol du aroj; ĝi estas ĝeneraligebla ankaŭ al nefinie da aroj. Ĝi estas komuteca kaj asocieca. Oni notas ĝin per la komunaĵiga signo (∩), kiu similas al inversigita pelveto.

La kunigo kaj la komunaĵigo estas reciproke distribuecaj. La aroj do kun tiuj du operacioj formas latison.

Eksteraj ligiloj

greke http://plato.stanford.edu/entries/set-theory greke http://www.math.niu.edu/~rusin/known-math/index/03EXX.html greke http://planetmath.org/encyclopedia/SetTheory.html greke http://www.mathe-online.at/mathint/mengen/i.html greke http://www.settheory.net/