Astronomio

El Vikipedio, la libera enciklopedio
Saltu al: navigado, serĉo
Giganta mozaiko de nebulozo M1, fotita per teleskopo Hubble

Astronomio (aŭ astroscienco) estas la scienco pri la Universo, studante la situo, movado, strukturo, origino kaj evoluado de la astroj kaj per ili formitaj sistemoj. En aparta, astronomio estas studanta de Suno kaj alia steloj, planedoj de sunsistemo kaj ilia satelitoj, ekzoplanedoj, asteroidoj, kometoj, meteorŝtonoj, pulsaroj, nigraj truoj, nebulozoj, galaksioj kaj ilia aroj, kvazaroj kaj multe pli.[1]

Astronomion influas rezultoj el multaj aliaj fakoj. Precipe tiuj estas fiziko, apude ankaŭ kemio, geologio, geofiziko, mineralogio, biologio kaj matematiko.

Astronomiistoj de praaj civilizacioj enkondukis metodajn observojn kiuj permesis eltrovi la unuajn astronomiajn sciojn. Malgraŭ tio, necesis la invento de la teleskopo por la evoluo de astronomio al moderna scienco.

Ekde la dudeka jarcento la kampo profesia astronomio estis dividita al observada astronomio kaj teoria astrofiziko. En observada astronomio oni kolektas datumojn, kaj krome laboras pri konstruo kaj riparo de aparatoj kaj pritrakto de la rezultoj. En la kampo de teoria astrofiziko oni enfokusigas evoluigon de komputilaj aŭ analizaj modeloj por priskribi astronomiajn objektojn kaj fenomenojn. La du kampoj komplementas unu la alian tiel, ke teoria astrofiziko strebas klarigi la observajn rezultojn. Astronomiaj observaĵoj povas esti ilo por testi la fundamentajn teoriajn en fiziko, ekzemple tiu pri ĝenerala relativeco.

Astronomion oni ne konfuzu kaj miksu kun astrologio. Kvankam la du kampoj iam estis kunligitaj, oni nuntempe ĝenerale strikte disigas ilin unu de la alia.[2]

Historio[redakti | redakti fonton]

Tiu ĉi teksto de Hans Sachs el la jaro 1586 montras, ke en la mezepoko astronomio kaj astrologio ankoraŭ intermiksiĝis.[3]
Sur ĉiuj kontinentoj kaj ekde la antikvo, la observado de la ĉielo estis gravega al la homoj (Kodeks Duran).

Astronomio estas unu el la plej malnovaj sciencoj. La komenco de astronomio verŝajne rilatis al la kulta adoro de ĉielkorpoj. En jarmila procedo, iom post iom disiĝis unue astronomio kaj naturreligio, poste astronomio, meteorologio kaj kalendarkalkulado, fine de la mezepoko astronomio kaj astrologio.[4]

La arkeologio montras, ke astronomiistoj de la bronzepoko metode observis la noktan ĉielon. Elementaj astronomiaj scioj estis jam eltrovitaj en tiu epoko, kiel la kono de konstelacioj, la nocioj pri ekvinoksoj kaj iliaj rilato al la sezonoj. Iuj konstruaĵoj, kiel Stonehenge havis tre probable astronomian celon. La antaŭvido de la sezona ciklo tre gravis, por terkultiva civilizo.

Antikvo[redakti | redakti fonton]

  • Antaŭrimarkoj:
    • Memkompreneblas, ke se ĉiuj observoj estis faritaj nudokule, faciligis tiun taskon al niaj prauloj la foresto de industria poluo kaj ĉefe de luma poluo. Pro tio la plej multaj nuntempaj "tradiciaj" observoju estus tutsimple ne realigeblaj.
    • Oni ne forgesu, ke jam ŝajne relative simplaj observoj (simpla desegno de kvar aŭ kvin ĉielkorpoj) jam supozas altan civilizon, tio estas almenaŭ la kuna ekzisto de skribo (almenaŭ baza) kaj astronomia sistemo, entenante kosmogonion, kosmologion kaj ĉielmapon, kiel ankaŭ kalendaron (foje tre evoluiĝinta) kaj astronomian observatorion, tiu lasta ofte rudimenta.
    • Dum jarmiloj astronomio estis ligita al astrologio, kiu ofte estis la unua kialo (latine: primum movens). La disiĝo komenciĝis nur dum klerismo, la jarcento de la lumoj, kaj daŭrigas nuntempe.
Stonehenge
  • La sistemoj la plej bone konataj kaj evoluiĝintaj estas:
    • en la neolitiko: la grandaj megalitaj cirkloj, kiuj fakte estis astronomiaj observatorioj, inter la plej konataj: Nabta Playa (inter 6.000 kaj 6.500 jarojn malnova) kaj Stonehenge (Wiltshire, Anglujo, 1.000 jarojn poste). Flammarion, kiu komprenis tion inter la unuaj, priskribis tiujn monumentojn kiel "monumentoj alvokitaj al astronomio" kaj "ŝtonaj observatorioj".

En Mezopotamio, astronomio estigas unuajn fundamentojn de matematiko. La priskribo de la vojo de moviĝemaj steloj okazis unue laŭ 3 vojoj paralelaj al la ekvatoro. Post la unuaj sistemaj observadoj de la fino de la 2-a jarmilo (ĉirkaŭ -1200) oni pli bone konis la vojojn de la suno kaj de la luno.

Ĉirkaŭ la 8-a jarcento a.K. estiĝis la nocio de ekliptiko kaj poste unua formo de zodiako en 12 samaj eroj (tempaj, ankoraŭ ne spacaj). Meze de la unua jarmilo ekzistas kune sistemo de 12 simboloj tre praktikaj por kalkuli la pozicion de la steloj kaj konstelacioj por interpretado astrologia. Nur tiam oni fiksas la periodojn de la cikloj de planedoj kaj aperas la disigo en 306 gradoj de la ekliptiko. La astronomio mezopotamia malsamas ĝenerale de la greka pro sia aritmetika eco: kontraŭe al la greka astronomio, la mezopotamia estas empira. Oni ne serĉas la kialon de la movoj, oni ne kreas modelojn por ilin prezenti, la fenomenoj ne estas spertitaj kiel aspektoj rezultantaj de geometrie reprezentebla kosmo. Tamen al mezopotamiaj astronomiistoj dankindas detala priskribo de multaj observadoj ekde almenaŭ la 8-a jarcento. La grekaj astronomiistoj profitis tiujn observadojn.

Malfrua antikvo[redakti | redakti fonton]

La antikvaj grekoj, inter kiuj Eratosteno, Eudoxe, Apolonio, kaj ĉefe Hiparko kaj Ptolemeo, evoluigis iom post iom tercentran teorion tre kompleksan. Aristarko el Samoso starigas la bazojn de suncentra teorio. Rilate al la sunsistemo, danke al la teorio de la epicikloj kaj la evoluigo de tabuloj fonditaj sur tiu ĉi teorio eblis jam ekde la epoko de Aleksandro kalkuli sufiĉe precize la moviĝojn de la steloj inkluzive de la lunaj kaj sunaj eklipsoj.

Rilate al la stela astronomio la grekoj alportis multon, ĉefe la difinon de la sistemo de videbla magnitudo. Tiel la Almagesto de Ptolemeo (90 - 168) enhavis jam liston de kvardek ok konstelacioj kaj 1.022 steloj.

Mezepoko[redakti | redakti fonton]

En la mezepoko ne eblis studi astronomion sen aldonaj kaj necesaj sciencoj kiel matematiko, geometrio, trigonometrio kaj filozofio. Ĝi utilas por kalkuli la tempon.

  • La hinda astronomio kulminis ĉirkaŭ 500 pro la Aryabhata, kiu prezentas matematikan sistemon kvazaŭ-kopernikan, en kiu la tero turniĝas laŭ sia akso. Tiu ĉi modelo priskribas la moviĝojn de la planedoj rilate al la suno - ĉirkaŭ 1.000 jarojn antaŭ la okcidento!
  • En la 8-a jarcento sankta Bede evoluigis en la okcidento la liberajn artojn (trivium kaj quadrivium). Li starigis la regulojn de la comput por kalkuli la datojn de la moviĝemaj festoj kaj por la kalkulo de la tempo, kiu bezonis astronomiajn elementojn.
  • Por navigacii surmare aŭ trairi dezerton la civilizo araba bezonis tre detalajn datumojn. Ido de la hinda kaj greka astronomioj, la araba kulminis ĉirkaŭ la 10-a jarcento.

Ekde la 9-a jarcento multaj islamanaj astronomiistoj konatas:

Fine de la 10-a jarcento konstruiĝis granda observatorio ĉe Teherano fare de la astronomiisto al-Khujandi.

En la 12-a jarcento tradukiĝis la verko de Al-Farghani al la latina, samtempe kiel multaj aliaj arabaj verkoj kaj la filozofio de Aristotelo.

En la islama mondo citindas:

Moderno[redakti | redakti fonton]

Sondilo de tipo Voyager

Gravaj ŝtupoj por la scio pri la kosmo estis la invento de la lorno antaŭ ĉirkaŭ 400 jaroj kaj la enkonduko de la fotado kaj spektroskopio en la 19-a jarcento. Ekde la mezo de la 20-a jarcento astronomiistoj havis la eblon transi la teran atmosferon per kosmoŝipoj kaj observi la kosmon sen ĝiaj malhelpaĵoj, do en ĉiuj partoj de la elektromagneta spektro. Aldoniĝis unuafojon la eblo rekte viziti la esploratajn objektojn kaj fari surloke ne nur observadojn, sed ankaŭ mezuradojn. Krome konstruiĝis pli kaj pli grandaj teleskopoj por observadoj de la tero.

La 3-an de marto 1972 ekflugigis NASA la sondilon Pioneer 10. Ĝi estis la 3-an de decembro 1973 la unua spacosondilo, kiu preterflugis la planedon Jupiteron. La sondilo Pioneer 11 startis la 6-an de aprilo 1973 kaj preterpasis Jupiteron la 3-an de decembro 1974 kaj Saturnon la 1-an de septembro 1979.

La 5-an de septembro 1977 NASA startigis la sondilon Voyager 1, kiu sukcesis preterpasi Jupiteron post vojaĝo de 675 milionoj da kilometroj la 5-an de marto 1979; sekvis ĝia preterpaso de Saturno novembre de la jaro 1980. La 20-an de aŭgusto 1978 startis Voyager 2, la plej sukcesa Swing-by-spacosondilo de ĉiuj tempoj en la eksteran sunsistemon (misiodatumoj: Jupiteropreterpaso la 9-an de julio 1979, Saturnopreterpason kaj Uranusopreterpason januare 1986, preterpaso de Neptuno en 1989).

Ĉefaj branĉoj[redakti | redakti fonton]

Galaksio M51, ankaŭ nomata la kirliĝo-bano-galaksio

La astronomia scienco dividiĝas kutime laŭ la esplorataj objektoj kaj laŭ la fakto, ĉu la esploro estas teoria aŭ observa. Gravaj fundamentaj fakoj estas la observa astronomio, la astrofiziko, la astrometrio kaj la ĉielmekaniko. La plej gravaj esplorkampoj estas la fiziko de la sunsistemo, ĉefe la planedoscienco, la galaksia astronomio, kiu esploras la Laktan Vojon kaj ties centron, la ekstergalaksia astronomio, kiu esploras la strukturon de aliaj galaksioj kaj ties aktivaj kernoj aŭ gamo-radiaj ekbriloj, kiel la plej energiriĉaj procedoj en la kosmo, kaj la relativeca astrofiziko, kiu okupiĝas ekzemple pri nigraj truoj. La stelastronomio esploras pri naskiĝo, evoluo kaj morto de steloj.

La kosmologio traktas la historion kaj estiĝon de la kosmo.

Sunscienco[redakti | redakti fonton]

Loupe.svg Pli detalaj informoj troveblas en la artikolo Suno.
Transviola bildo la suna fotosfero, fotita per la kosmoteleskopo TRACE de la usona kosmagentejo NASA

La Suno estas la plej detale esplorata stelo. Kvankam ĝi ne estas varianta stelo, ĝia aktiveco ja spertas regulajn ŝanĝiĝojn, dum periodo de 11 jaroj, kiuj ligiĝas al apero kaj malapero de sunmakuloj - regionoj el la suna supraĵo malpli varmaj ol sia ĉirkaŭaĵo, ĉe kiuj mezureblas rimarkindaj magnetaj kampoj.[5]

La Sunon ankaŭ karakterizas neregulaj ŝanĝiĝoj kiuj, pasintece, forte influis Teron kaj teran vivon.[6] Ekzemple, la minimumo de Maunder plej verŝajne okazigis la malgranda glaciepoko kiun Tero vivis dum mezepoko.[7]

La ena strukturo de la Suno konsistas el kerno, kie okazas nuklea fuzio; radiada regiono, kie energio trairas la plasmon kiel elektromagneta radiado; kaj konvekta regiono, kie varma gaso konvektas kaj transportas la energion ĝis la suna supraĵo. Plej verŝajne, la magnetaj fenomenoj kiuj estigas sunmakulojn fontas el tiu ĉi konvekta regiono.[5]

Sunscienco tamen ankaŭ studas la plej eksterajn partojn de la Suno, kiel la ĥromosfero kaj la suna vento - kies influo etendiĝas ĝis la sunpaŭzo. Interalie, la suna vento ankaŭ interagas kun la magnetosfero de Tero, tiel estigante la zonojn de Van Allen kaj okazigante la aŭrorojn.[8]

Planedoscienco[redakti | redakti fonton]

La nigra makulo en la supra parto de la bildo estas polva diablo, speco de aerkirlo kiu oftas sur Marso.
Loupe.svg Pli detalaj informoj troveblas en la artikolo Planedoscienco.

Planedoscienco estas la branĉo kiu esploras la historion de planedoj, nanplanedoj, lunoj, kometoj, asteroidoj kaj ĉiuj aliaj objektoj kiuj ĉirkaŭorbitas la Sunon aŭ aliajn stelojn. La nuna kompreno pri historio kaj funkciado de la sunsistemo fontis unue el teleskopa observado, kaj sekve el esplorado per kosmosondiloj.[9]. Oni komprenas, ke planedoj fontis el la praplaneda disko kiu ĉirkaŭis la Sunon dum la frua parto de ĝia vivo. Planedoj pligrandiĝis per laŭgrada akumulado de tiu materio, kaj spertadis oftajn koliziojn kun aliaj prakorpoj en la frua sunsistemo - kion nekontesteble pruvas la kraterriĉa supraĵo de kelkaj objektoj, kiel ekzemple la Luno, ĉe kiu manko de atmosfero ebligis konservi parton de la tiama supraĵo ĝis nun. Oni supozas, ke la Luno mem verŝajne estiĝis per kolizio inter la pratero kaj alia similgranda planedo.[10]

Planedoscienco ankaŭ okupiĝas pri geologiaj fenomenoj kiuj okazas ĉe la nuntempaj planedoj, kiel ekzemple vulkanoj, tertremoj, tektoniko, vetero (okaze de planedoj kun sufiĉe dika atmosfero) kaj tiala erodo. Ĝenerale, malgrandaj ĉielkorpoj malvarmiĝas pli rapide ol grandaj astroj, kaj geologiaj fenomenoj ĉe ili emas tute ĉesi.[11]

Planedoscienco ankaŭ ekstudis, ekde la 1990-aj jaroj, la ekziston de ekstersunsistemaj planedoj.

Stelscienco[redakti | redakti fonton]

Loupe.svg Pli detalaj informoj troveblas en la artikolo Stelo.
La Nebulozo Formiko. Gaso eliras simetrie el la mortanta stelo en la mezo, malkiel en la okazo de kutimaj eksplodoj, ĉe kiuj gaso disvastiĝas malsimetrie.

La studo de steloj kaj de ilia evoluo naskiĝis per observado kaj teoria esplorado, kaj ekde la dua duono de la 20-a jarcento ankaŭ baziĝas sur komputila simulado de la ena strukturo de steloj kaj de ilia funkciado.[12]

Steloj formiĝas en regionoj riĉaj je polvoj kaj gasoj, kiuj densiĝas kaj amasiĝas ĝis atingo de sojla maso ĉe kiu ekestas nuklea fuzio.[13]

Danke al steloj kreiĝis ĉiuj elementoj pli pezaj ol hidrogeno kaj heliumo, kiuj preskaŭ neniom formiĝis okaze de la praeksplodo.[12]

Galaksia astroscienco[redakti | redakti fonton]

Galaksia astroscienco okupiĝas pri la studo de galaksioj, de ilia pasinta kaj estonta evoluo, de ilia dinamiko kaj de ilia konsisto.

La sunsistemo mem situas en la galaksio Lakta Vojo, elstara ano de la Loka Grupo de galaksioj. Pro tio, ke ni situas en la polvo-riĉaj eksteraj partoj de la galaksio, parto de la Lakta Vojo ne videblas al ni - kio rezultigas, ke granda parto el nia nuna kompreno pri la funkciado de galaksioj fontas el observado de aliaj galaksioj.

La observata rotacirapido de galaksioj pensigas, ke ili posedas ege pli da maso ol kiom videblas per teleskopoj. Oni tial eksupozis, ke grandan parton de galaksioj konsistigas nevidebla materio, kvankam ĝiaj ekzaktaj konsisto kaj deveno restas tute malklaraj.[14]

Ekstergalaksia astroscienco[redakti | redakti fonton]

En la bildo videblas pluraj bluaj ringoformaj objektoj, kiuj tamen estas bildigoj de la sama galaksio, kies lumo akiras nin el pluraj direktoj pro la efiko de gravitlenso estigita de la aro de flavaj galaksioj kiu videblas ĉe la mezo de la foto. La altirforto de la galaksiaro kurbigas lumon kaj modifas la aspekton de la malantaŭaj objektoj.

La esplorado de objektoj kaj ĉielkorpoj ekster nia galaksio ĉefe koncernas demandojn pri la estiĝo kaj evoluo de galaksioj, pri ilia nuna aspekto kaj funkciado, kaj pri la strukturo de galaksiamasoj.

Interesa studobjekto de ekstergalaksia astronomio estas aktivaj galaksioj, ĉielobjektoj kiuj ŝajnas produkti grandan parton el sia energio el fonto malsimila kiel steloj aŭ varmaj gasoj; tiu energio ŝajnas fonti el tre limigita regiono en la centro de la galaksio, kie supozeble situas grandega nigra truo kies radiado ŝuldiĝas al enfalanta materio.

Radiogalaksio estas aparta speco de aktiva galaksio kiu plej elstare videblas per radioondoj: tiaj galaksioj estas galaksioj de Seyfert, kvazaroj kaj blazaroj. Kvazaroj estas verŝajne la plej helaj objektoj en la universo.[15]

Ekstergalaksia astroscienco ankaŭ esploras la grandskalan strukturon de la kosmo, kiu konsistas el aroj kaj amasoj de galaksioj. Galaksioj ŝajnas situi laŭ fadenoj, kiujn apartigas grandaj malplenoj.[16]

Radioastronomio[redakti | redakti fonton]

Loupe.svg Pli detalaj informoj troveblas en la artikolo Radioastronomio.

Radioastronomio estas la branĉo de astroscienco kiu studas radiadon kun ondolongo pli granda ol unu milimetro.[17] Ĝi malsamas kiel la aliaj branĉoj de observada astroscienco, ĉar radioondon eblas konsideri kaj pritrakti kiel ondon anstataŭ ol sinsekvon de fotonoj.

Dum kelkaj radioondoj fontas el astronomiaj objektoj kiel varmoa radiado, la plejparto el la radioondoj videblaj el Tero konsistas el sinkrotrona radiado, kiu estiĝas kiam elektronoj oscilas ĉirkaŭ magnetaj kampoj.[17] Krome, pluraj spektraj linioj kiuj estas tipaj de interstela gaso, kiel ekzemple la spektra linio de hidrogeno je 21 cm, videblas ĉe radiaj ondolongoj.[17][18]

Interalie, per radioastronomio eblas pristudi supernovaojn, interstelan gason, pulsarojn kaj aktivajn galaksiajn nukleojn.[17][18]

Kosmoscienco[redakti | redakti fonton]

Astronomio kaj aliaj sciencoj[redakti | redakti fonton]

Proksimaj al la astronomio estas fiziko kaj matematiko. Tiuj fakoj ofte helpis unu la alian kaj estas unuo en la studo de astronomio. La kosmo ofte evidentiĝas kiel laboratorio de fiziko, kies teorioj povas esti ofte testataj nur ĉe varmegaj energiriĉaj objektoj. La malfacilaj kaj komplikaj kalkuloj de la astronomio pelis la matematikon al la cifereca analitiko kaj komputiko.

Tradicie la kunlaborado inter astronomio kaj geodezio (astrogeodezio, lokodifino kaj tempodifino, navigacio), tempo- kaj kalendarkalulado kaj optiko (evoluo de astronomiaj iloj). Geodeziaj metodoj estas uzataj ankaŭ por difini gravitacian kampon aŭ figuron de aliaj ĉielkorpoj.

En la lastaj jardekoj pli kaj pli graviĝis la kunlaboro inter astronomio kaj modernaj geologio kaj terfiziko. La mineralogio analizas la ŝtonojn de la tero kun metodoj similaj al tiuj de aliaj ĉielkorpoj. La kosmokemio, kiel parto de la kemio esploras la estiĝon kaj disiĝon de kemiaj elementoj kaj ligaĵoj en la kosmo . La astrobiologio temas pri la estiĝo kaj ekzisto de vivo ekster la tero.

Notoj kaj referencoj[redakti | redakti fonton]

  1. КОНОНОВИЧ, Э. В.; Мороз В. И.. Иванов В. В.: (2004). Иванов В. В.: Общий курс Астрономии / La ĝenerala kurso de Astronomio, 2-a eldono, Классический университетский учебник, Ruse, Moskvo: Едиториал УРСС, 544. ISBN 5-354-00866-2. 
  2. Albrecht Unsöld; Bodo Baschek, W.D. Brewer (translator). (2001). The New Cosmos: An Introduction to Astronomy and Astrophysics. Springer (Berlino, Novjorko). 
  3. Tiel mi estas astronomiisto, rekonas ontan eklipson de suno kaj luno per la steloj. El tio mi povas dedukti ĉu venos fruktodona jaro, ĉu prezaltiĝo aŭ militminaco kaj aliaj malsanoj...
  4. Komparu ekzemple Ferenc Némethy: Astronomisches und medizinisches Doppelfragment zu Budapest. Untersuchung der lateinischen und der deutschen Handschrift im Kodex 19167/S.91 der Semmelweis-Bibliothek für Geschichte der Medizin, Würzburg 1998 (= Würzburger medizinhistorische Forschungen, 26)
  5. 5,0 5,1 Johansson, Sverker. The Solar FAQ. Talk.Origins Archive (2003-07-27). Alirita 2006-08-11.
  6. Lerner, K. Lee. Environmental issues: essential primary sources.". Thomson Gale (2006). Alirita 2006-09-11.
  7. Pogge, Richard W. (1997). The Once & Future Sun. New Vistas in Astronomy. Alirita 2010-02-03.
  8. Stern, D. P.; Peredo, M. (2004-09-28). The Exploration of the Earth's Magnetosphere. NASA. Alirita 2006-08-22.
  9. Bell III, J. F.; Campbell, B. A.; Robinson, M. S.. (2004). Remote Sensing for the Earth Sciences: Manual of Remote Sensing, 3-a, John Wiley & Sons. Alirdato: 2006-08-23. 
  10. Montmerle, Thierry; Augereau, Jean-Charles; Chaussidon, Marc kaj aliaj (2006). "Solar System Formation and Early Evolution: the First 100 Million Years", gazeto : {{{gazeto}}}. Earth, Moon, and Planets, volumo : 98, paĝoj : 39–95. COI:10.1007/s11038-006-9087-5
  11. Beatty, J.K.; Petersen, C.C.; Chaikin, A.: (1999) Beatty, J.K.; Petersen, C.C.; Chaikin, A.: The New Solar System, 4-a, Cambridge press, 70. ISBN 0-521-64587-5. 
  12. 12,0 12,1 Harpaz, 1994, pp. 7–18
  13. SMITH, Michael David. (2004). The Origin of Stars. Imperial College Press, 53–86. ISBN 1860945015. 
  14. Van den Bergh, Sidney (1999). "The Early History of Dark Matter", gazeto : {{{gazeto}}}. Publications of the Astronomy Society of the Pacific, volumo : 111, paĝoj : 657–660. COI:10.1086/316369
  15. Active Galaxies and Quasars. NASA. Alirita 2006-09-08.
  16. ZEILIK, Michael. (2002). Astronomy: The Evolving Universe. Wiley. ISBN 0-521-80090-0. 
  17. 17,0 17,1 17,2 17,3 Cox, A. N.: (2000) Cox, A. N.: Allen's Astrophysical Quantities. Springer (Novjorko), 124. ISBN 0-387-98746-0. 
  18. 18,0 18,1 SHU, F. H.. (1982). The Physical Universe. University Science Books (Mill Valley, Kalifornio). ISBN 0-935702-05-9. 

Bibliografio[redakti | redakti fonton]

Esperante[redakti | redakti fonton]

Germane[redakti | redakti fonton]

  • Albrecht Unsöld, Bodo Baschek: Der neue Kosmos. (La nova kosmo.) ISBN 3-540-42177-7 (lernolibro por studado)
  • Benett kaj aliaj: Astronomie - Die kosmische Perspektive (Astonomio - la kosma perspektivo) (eld. Harald Lesch), 5-a aktualigita eldono 2010. Pearson Studium Verlag, München, ISBN 978-3-8273-7360-1
  • Meyers Handbuch Weltall, Wegweiser durch die Welt der Astronomie. 1994 (7. überarb. Aufl.), ISBN 3-411-07757-3
  • Der Brockhaus Astronomie: Planeten, Sterne, Galaxien. F. A. Brockhaus, Mannheim – Leipzig 2006, ISBN 3-7653-1231-2
  • Joachim Herrmann: dtv-Atlas Astronomie, 15-a eldono 2005. Deutscher Taschenbuch-Verlag München, ISBN 3-423-03267-7
  • Kurt Hopf: Von der Erde ins All – Das Weltall in Beispielen – edukcela materialkolekto sur kd por infanĝardenoj, lernejoj, observatorioj, COTEC-Verlag Rosenheim
  • Harry Nussbaumer: Das Weltbild der Astronomie. 2007, ISBN 978-3-7281-3106-5, 2-a pligrandigita kaj aktualigita eldono de la Hochschulverlag.
  • Arnold Hanslmeier: Einführung in Astronomie und Astrophysik. Spektrum Akad. Verl., Berlin 2007, ISBN 978-3-8274-1846-3
  • Hans-Ulrich Keller: Kompendium der Astronomie. Kosmos Verlags-GmbH & Co KG, Stuttgart 2008, ISBN 978-3-440-11289-2

Angle[redakti | redakti fonton]

Vidu ankaŭ[redakti | redakti fonton]

Eksteraj ligiloj[redakti | redakti fonton]