Jakobia matrico

El Vikipedio, la libera enciklopedio
Saltu al: navigado, serĉo

En vektora kalkulo, jakobia matrico estas la matrico de ĉiuj partaj derivaĵoj de la unua-ordo de vektoro-valora funkcio (vektora kampo). Ĝia gravas ĉar ĝi prezentas la plej bonan linearan proksimumadon de la diferencialata funkcio ĉirkaŭ la donita punkto. En ĉi tiu senco, la jakobia matrico estas la derivaĵo de multvariebla funkcio.

La jakobia determinanto estas determinanto de la jakobia matrico, kiu estas difinita se ĝi estas kvadrata matrico.

Jakobia matrico[redakti | redakti fonton]

Supozi F : RnRm estas funkcio de eŭklida n-spaco al eŭklida m-spaco. Tia funkcio estas donita per m reelo-valoraj komponantaj funkcioj, y1(x1, ..., xn), ..., ym(x1,...,xn). La partaj derivaĵoj de ĉiuj ĉi tiuj funkcioj (se ili ekzistas) povas esti organizitaj en m×n matricon, la jakobian matricon de F, kiel sekvas:

\begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}

Ĉi tiu matrico estas skribata kiel

J_F(x_1,\ldots,x_n) \qquad \mbox{or by}\qquad \frac{\partial(y_1,\ldots,y_m)}{\partial(x_1,\ldots,x_n)}

La i-a linio de ĉi tiu matrico estas donita per la gradiento de la funkcio yi por i=1, ..., m.

Se p estas punkto en Rn kaj F estas diferencialebla je p, tiam ĝia derivaĵo estas donita per JF(p) (kaj ĉi tiu estas la plej facila maniero komputi la derivaĵon). En ĉi tiu okazo, la lineara surĵeto priskribita per JF(p) estas la plej bona lineara proksimuma kalkulado de F proksime de la punkto p, en la senco kiu

F(\mathbf{x}) \approx F(\mathbf{p}) + J_F(\mathbf{p})\cdot (\mathbf{x}-\mathbf{p})

por x proksime al p.

Ekzemplo[redakti | redakti fonton]

La Jakobia matrico de la funkcio F : R3R4 kun komponantoj:

 y_1 = x_1 \,
 y_2 = 5x_3 \,
 y_3 = 4x_2^2 - 2x_3 \,
 y_4 = x_3 \sin(x_1) \,

estas:

J_F(x_1,x_2,x_3) =\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 5 \\ 0 & 8x_2 & -2 \\ x_3\cos(x_1) & 0 & \sin(x_1) \end{bmatrix}

Jakobia determinanto[redakti | redakti fonton]

Se m = n, tiam F estas funkcio de n-spaco al n-spaco kaj la jakobia matrico estas kvadrata matrico. Onii povas tiam kalkuli ĝian determinanton, sciata kiel la jakobia determinantojakobiano.

La jakobia determinanto, je donita punkto donas gravan informon pri la konduto de F proksime al la punkto. Ekzemple, la kontinue diferencialebla funkcio F estas inversigebla proksima p se la jakobia determinanto je p estas ne nula. Ĉi tiu estas la inversa funkcia teoremo. Plu, se la jakobia determinanto je p estas pozitiva, tiam F konservas orientiĝon proksime al p; se ĝi estas negativa, F ŝanĝas la orientiĝon. La absoluta valoro de la jakobia determinanto je p donas la faktoron per kiu la funkcio F elvolvas volumenojn proksime al p; ĉi tio estas kiel ĝi okazas en la ĝenerala anstataŭa regulo.

Ekzemplo[redakti | redakti fonton]

La jakobia determinanto de la funkcio F : R3R3 kun komponantoj

 y_1 = 5x_2 \,
 y_2 = 4x_1^2 - 2 \sin (x_2x_3) \,
 y_3 = x_2 x_3 \,

estas:

\begin{vmatrix} 0 & 5 & 0 \\ 8x_1 & -2x_3\cos(x_2 x_3) & -2x_2\cos(x_2 x_3) \\ 0 & x_3 & x_2 \end{vmatrix}=-8x_1\cdot\begin{vmatrix} 5 & 0\\ x_3&x_2\end{vmatrix}=-40x_1 x_2

De ĉi tiu ni vidas ke F ŝanĝas orientiĝon proksime tiuj punktoj kie x1 kaj x2 havas la saman signon; la funkcio estas loke inversigebla ĉie escepte de punktoj kie x1=0 aŭ x2=0. Se starti kun malgranda objekto ĉirkaŭ la punkto (1, 1, 1) kaj apliki funkcion F al la objekto, rezultiĝos objekto de 40-foje pli granda volumeno ol la originala unu.

Uzoj[redakti | redakti fonton]

La jakobia determinanto estas uzata en ŝanĝo de variabloj dum integralado de funkcio tra ĝia domajno. Por enkalkuli la ŝanĝon de bazo la jakobia determinanto estas kiel multiplika faktoro en la integralo. Normale estas postulite ke la ŝanĝo de bazo estas farita tiel ke estas riceproke unuvalora funkcio inter la koordinatoj antaŭ kaj poste, kiu postulo egalas al tio ke la jakobia determinanto estas ne nula.

Vidu ankaŭ[redakti | redakti fonton]

Eksteraj ligiloj[redakti | redakti fonton]