Operacioj per nombroj

El Vikipedio, la libera enciklopedio
Saltu al: navigado, serĉo

La plej famaj matematikaj operacioj estas tiuj, kiuj agas sur nombroj. Jen listo de la plej famaj de tiaj operacioj:

  • Adicio – operacio por trovi la sumon de nombroj aŭ kvantoj. La signo de adicio estas + (plus). Se ni adicias 5 kaj 3, ni ricevos 8. 5 kaj 3 estas adiciatoj, 8 estas sumo.
  • Subtraho – operacio por trovi la diferencon de la dua nombro per la unua nombro; La signo de subtraho estas (minus). Ekz. ĉe la subtraho: 9−6=3 oni diras, ke 9 estas la malpliigato, 6 estas la subtrahato, 3 estas la diferenco.
  • Multipliko – operacio, per kiu, se oni multiplikas nombron a per pozitiva entjero n, oni povas trovi la sumon de n ekzempleroj de nombro a. La signo de multipliko estas ·×. Ĉe la multipliko: a × b = c oni nomas a kaj b faktoroj, kaj c la produto, × estas la multiplika signo.
  • Divido – operacio, kies celo estas scii, kiomoble unu kvanto (nomata dividato) entenas alian (nomatan dividanto); la rezulto nomiĝas kvociento. La signo por divido estas : (dupunkto) au / (stango). Ekz. a:b=a/b; a dividite per b egalas a sur b.
  • Potenco – la produto de n faktoroj, el kiuj ĉiu egalas al a; ekz. 34=3 x 3 x 3 x 3=81 aŭ la kvara potenco de tri. La nombro 4 estas eksponento. Kutime la operacio estas skribita per indekso, la eksponento tiam estas skribita kiel supra indekso.
  • Radiko – la radiko de nombro a per alia nombro n estas tia nombro, ke ĝia potenco per n egalas al a: la noa radiko de 10; la radiko de 8 per 3 estas 2 (kuba radiko el 8); kvadrata radiko el 25 estas 5.
  • Logaritmo (de pozitiva nombro a en logaritma sistemo kun bazo b) – La eksponento, per kiu oni devas potenci b por ekhavi a. Dekuma logaritmo estas kun bazo 10; natura logaritmo – kun bazo e=2,71828...
  • Hiperoperatoro donas pluajn operaciojn en vico de adicio, multipliko, potencigo.

En la aro N (naturaj nombroj) ĉiam eblas la operacioj de la adicio, multipliko, potencigo, sed ne ĉiam subtraho, divido kaj radikado. Ekzemple, ne ekzistas natura nombro, kiu estas rezulto de la operacioj: 3−6 kaj 3:7. Por solvi ĉi-tiujn problemojn oni enkondukis la nociojn de negativaj nombroj kaj racionalaj nombroj.

Necesas bone distingi inter nombroj kaj numeroj, kiuj havas restriktitan aron da eblaj operacioj.