Preskaŭ ĉie

El Vikipedio, la libera enciklopedio
Saltu al: navigado, serĉo

En mezura teorio (branĉo de analitiko), oni diras ke propraĵo veras preskaŭ ĉie se la aro de eroj por kiu la propraĵo ne veras estas nula aro, kio estas estas aro kun mezuro nulo, aŭ en okazoj se la mezuro estas ne plena, enhavata en aro de mezuro nulo. Se la frazo estas uzata por propraĵoj de la reelaj nombroj, la lebega mezuro estas alprenata se la alie ne estas skribite.

Aro kun plena mezuro estas tiu kies komplemento estas de mezuro nulo.

Foje, anstataŭ diri ke propraĵo veras preskaŭ ĉie, oni ankaŭ diras ke la propraĵo veras por preskaŭ ĉiuj eroj, kvankam la termino "preskaŭ ĉiuj" ankaŭ havas la aliajn signifojn.

Jen estas iuj teoremoj kiuj engaĝas la terminon "preskaŭ ĉie":

\int_a^b f(x) \, dx \geq 0
por ĉiuj reelaj nombroj a < b.
  • Se f : RR estas lebege mezurebla kaj
\int_a^b |f(x)| \, dx < \infty
por ĉiuj reelaj nombroj a < b, do ekzistas nula aro E (dependa de f) tia ke se x estas ne en E, la lebega meznombro
\frac{1}{2\epsilon} \int_{x-\epsilon}^{x+\epsilon} f(t)\,dt
konverĝas al f(x) kiam ε malpligrandiĝas al nulo. En aliaj vortoj, la lebega meznombro de f konverĝas al f preskaŭ ĉie. La aro E estas nomata kiel la lebega aro de f, kaj povas esti pruvita al havi mezuron nulo.
  • Se f(x, y) estas borele mezurebla sur R2 tiam por preskaŭ ĉiu x, la funkcio y→f(x, y) estas borele mezurebla.

En teorio de probabloj, la frazoj preskaŭ certepreskaŭ ĉiam, respektivas al probablo egala al 1.