Aĥila nombro
| Klasifiko de entjeroj laŭ dividebleco |
| Formoj de faktorado: |
| Primo |
| Komponita nombro |
| Pova nombro |
| Kvadrato-libera entjero |
| Aĥila nombro |
| Nombroj kun limigitaj sumoj de divizoroj: |
| Perfekta nombro |
| Preskaŭ perfekta nombro |
| Kvazaŭperfekta nombro |
| Multiplika perfekta nombro |
| Hiperperfekta nombro |
| Unuargumenta perfekta nombro |
| Duonperfekta nombro |
| Primitiva duonperfekta nombro |
| Praktika nombro |
| Nombroj kun multaj divizoroj: |
| Abunda nombro |
| Alte abunda nombro |
| Superabunda nombro |
| Kolose abunda nombro |
| Altkomponita nombro |
| Supera altkomponita nombro |
| Aliaj: |
| Manka nombro |
| Bizara nombro |
| Amikaj nombroj |
| Kompleza nombro |
| Societema nombro |
| Nura nombro |
| Sublima nombro |
| Harmondivizora nombro |
| Malluksa nombro |
| Egalcifera nombro |
| Ekstravaganca nombro |
| Vidu ankaŭ: |
| Divizora funkcio |
| Divizoro |
| Prima faktoro |
| Faktorado |
En matematiko, aĥila nombro estas entjero kiu estas pova sed ne perfekta povo. Pozitiva entjero n estas pova nombro, se por ĉiu prima divizoro p de n, ankaŭ p2 estas dividanto. Ĉiu aĥila nombro estas pova. Tamen ne ĉiu pova nombro estas aĥila nombro, sed nur tia, kiu ne povas esti prezentita kiel mk, kie m kaj k estas pozitivaj entjeroj pli grandaj ol 1.
Vico de Aĥilaj nombroj
[redakti | redakti fonton]La aĥilaj nombroj inter 1 kaj 5000 estas:
- 72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1800, 1944, 2000, 2312, 2592, 2700, 2888, 3087, 3200, 3267, 3456, 3528, 3872, 3888, 4000, 4232, 4500, 4563, 4608, 5000.
Ekzemploj
[redakti | redakti fonton]108 estas pova nombro. Ĝia prima faktorigo estas 22×33, kaj tial ĝiaj primaj faktoroj estas 2 kaj 3. Ambaŭ 22=4 kaj 33=27 estas divizoroj de 108. Tamen, 108 ne povas esti prezentita kiel mk, kie m kaj k estas pozitiva entjeroj pli grandaj ol 1, tiel 108 estas aĥila nombro.
784 ne estas aĥila nombro. Ĝi estas pova nombro, ĉar nur estas 2 kaj 7 ĝiaj primaj faktoroj, kaj ankaŭ 22=4 kaj 72=49 estas divizoroj de ĝi. Tamen, ĝi estas perfekta povo:
- 784=24×72 = (2×2×7)2
kaj do ĝi ne estas aĥila nombro.
Eksteraj ligiloj
[redakti | redakti fonton]- MathWorld: Aĥila nombro
- A052486 en OEIS - vico de aĥilaj nombroj