Ekvilibra aro

El Vikipedio, la libera enciklopedio
(Alidirektita el Balancita aro)
Salti al navigilo Salti al serĉilo

En lineara algebro, ekvilibra aro estas subaro de vektora spaco, kiu estas fermita sub multipliko per tiuj skalaroj, kies absolutaj valoroj estas ne pli ol unu.

Difino[redakti | redakti fonton]

Supozu ke estas la korpo de aŭ la reeloj aŭ la kompleksaj nombroj. Supozu ke estas vektora spaco super .

Subaro de estas ekvilibra se kaj nur se

.

Pli konkrete, jen la kriterio: pri ajna kaj , se , do .

La ekvilibraĵo de subaro estas la plej malgranda ekvilibra aro enhavanta la subaron S, aŭ pli konkrete la subaro

.

Propraĵoj[redakti | redakti fonton]

Ekzemploj[redakti | redakti fonton]

  • En ajna vektora spaco, la malplena aro kaj la tuta vektora spaco estas ĉiam ekvilibraj aroj. Pli ĝenerale, ĉiu lineara subspaco de reela aŭ kompleksa vektora spaco estas ekvilibra aro.
  • La unuoglobo en normigita vektora spaco estas ekvilibra aro.

Ekvilibraj aroj en la kompleksa ebeno[redakti | redakti fonton]

En la kompleksa ebeno , rigardata kiel 1-dimensia vektora spaco super si, la ekvilibraj aroj estas unu el la ĉi-suba listo:

  • La tuta kompleksa ebeno
  • Pri ajna nenegativa reelo , la fermita disko de radiuso :
    • Specife, se , la origina unuopo
  • Pri ajna nenegativa reelo , la malfermita disko de radiuso :
    • Specife, se , la malplena aro

Tamen, en la dudimensia eŭklida spaco rigardata kiel dudimensia reela vektora spaco, ekzistas aliaj ekvilibraj aroj; ekzemple, pri ajna , la subaro

estas ekvilibra.

Eksteraj ligiloj[redakti | redakti fonton]