Elektromagneta radiado

El Vikipedio, la libera enciklopedio
Salti al navigilo Salti al serĉilo

Elektromagneta radiado estas radiado el elektra kampo () kaj magneta indukdenso () de fotonoj. La du kampoj estas ortaj inter si kaj havas fiksan rilaton.

Elektromagneta ondo: ligita oscilado de elektra kampo kaj magneta indukdenso, modelo de vibranta dupoluso, normala 3-dimensia sistemo de karteziaj koordinatoj: (,,)

La fizikisto James Clerk Maxwell en 1864 antaŭdiris elektromagnetajn ondojn surbaze de teoriaj kalkuloj kaj la ekvacioj poste nomitaj laŭ li. Li kalkulis, ke ili propagiĝas per lumrapido kaj tial jam (prave) supozis, ke videbla lumo konsistas el elektromagnetaj ondoj. En 1888 Heinrich Rudolf Hertz praktike demonstris la ekziston de elektromagnetaj ondoj.

Parto de videbla spektro
Oni montras la relativajn ondolongojn de la elektromagnetaj ondoj de tri diferencaj koloroj de lumo (blua, verda kaj ruĝa) kun distanca skalo en mikrometroj laŭlonge de la ikso-akso.

Elektromagnetaj ondoj havas diversajn frekvencojn ( f ), ligitajn al la ondolongo (λ) per la lumrapido c ( f·λ = c ). La rapido de iliaj fotonoj ne varias laŭ la moviĝo de la mezursistemo, sed estas absoluta kaj konstanta. Tiun fakton Albert Einstein eltrovis en sia speciala teorio de relativeco.

Elektromagnetaj ondoj montras fenomenojn, kiuj klare distingas ilin kiel ondojn, ekzemple interferon. Aliflanke ili montras ankaŭ fenomenojn, kiuj pruvas ilian partiklan naturon, ekzemple la fakton (lasero), ke la joniga kapablo de lumo dependas ne de ties intenso, sed de ties frekvenco. Elektromagnetaj ondoj do klare montras duoblan naturon, kaj sin tenas kiel ondoj kaj partikloj.

Aparatoj[redakti | redakti fonton]

Diagramo de bolometro.

Bolometro estas aparato, kiu mezuras la varmigan povumon de elektromagneta radiado. Bolometro konsistas el du ĉefelementoj:

  • Varmosorbilo, ekzemple maldika metala lado
  • Varmorezervujo (korpo tiel granda, ke ĝia temperaturo ne multe ŝanĝas)

La du elementoj estas ligitaj per varmokonduktilo.

Kiam radioj verŝiĝas sur la sorbilon, la sorbilo varmiĝas. La varmo trafluas tra la kondukilo en la rezervujon. Se la rapido de radia surverŝo estas sufiĉe granda, do la sorbilo hejtiĝas pli rapide ol la kapablo de la kondukilo forkondukti la troan varmon; termometro (ekz. termistoro) povas do mezuri la temperaturan diferencon inter la du ĉefelementojn kaj, tiele, la radian povumon.

Se la varmokapacito de la sorbilo estas (en ĵulo/kelvino), kaj la varmokonduktanco de la konduktilo estas (en vato/kelvino), do la tempa varmokonstanto estas (en sekundo). Ju pli granda estas la tempa varmokonstanto, des pli sentiva estas la bolometro.

Historio de rilataj malkovroj[redakti | redakti fonton]

Benjamin Franklin ĉirkaŭ la jaro 1750 esploradis elektrostatikon. Multaj tiamaj fizikistoj ekkonatiĝis kaj interesiĝis pri elektro, danke al liaj eksperimentoj pri fulmoj kaj iliaj proprecoj.[1]

Franklin publikigis hipotezon, laŭ kiu elektrajn proprecojn kaŭzis iu elektra likvaĵo per sia abundo aŭ malabundo en materialoj. Kvankam malĝusta, lia teorio komencis la ĝisnunan kutimon uzi la simbolojn + kaj - por priskribi elektrajn ŝarĝojn.[2]

En la jaro 1785, Charles-Augustin de Coulomb verkis tri memuarojn pri elektro kaj magnetismo,[3] en kiu li raportis, ke la forto inter du elektraj ŝargoj estas simila al la gravito, kaj ke la forto estas inverse proporcia al la kvadrato de la rekta distanco inter la partikloj, la ŝargo de ili estas proporcia al iliaj densecoj de elektra fluidaĵo. La vektora formulado de la kulomba leĝo laŭ la internacia sistemo de unuoj estas:

kie

estas la elektra forto inter la partiklo 1 kaj la partiklo 2,
estas la elektra kampo de la partikulo 2, en la loko de la partiklo 1,
q1 et q2 estas la respektivaj elektraj ŝargoj de la partikloj 1 et 2,
estas la distanco inter la partikloj 1 kaj 2, t.e.
estas vektoro indikanta la direkton de la forto suferita de partiklo 1 fare de partiklo 2, kaj
estas elektra konstanto, foje nomata kulomba konstanto.

Johann Carl Friedrich Gauss, matematikisto kaj sciencisto, en la jaro 1813, formulis la teoremon pri la inversa kvadrata leĝo de kampoj,[4] kaj deduktis sian gaŭsan leĝon, kiu poste konsideriĝis kiel aparta kazo de la nuna nomita teoremo de Stokes.[5] Aplikante la gaŭsan leĝon oni deduktas la kulomban leĝon, kaj per la diverĝenca teoremo (foje ankaŭ nomita gaŭsa teoremo) oni obtenas la gaŭsan elektrostatikan formulon sub la diferenciala formo de hodiaŭ:

kie estas la diverĝenco, estas la loka denso de elektra ŝargo ĉirkaŭ la konsiderita punkto, se estas pluraj elektre ŝargitaj partikloj en iu volumeno, sekve ke estas la rezulta elektra kampo kreita de tiuj partikloj.

Vidu ankaŭ[redakti | redakti fonton]

Notoj[redakti | redakti fonton]

  1. "Eksperimentoj kaj Observoj pri Elektro farita ĉe Filadelfio en Usono, de Benjamin Franklin, LLD kaj FRS", F. Newbery Londono, M.DCC.LXXIV "vidu ankaŭ memuaron "400 jaroj de Benjamin Franklin kaj fulmoŝirmilo" skribitan de E . Philip Krider.
  2. Hence have arisen some new terms among us: we say B,(and bodies like circumstanced) is electrified positively; A, negatively. Or rather, B. is electrified plus; A, minus. (Sekve ŝprucis novaj terminoj inter ni, ni diros B (kaj korpoj ŝajnantaj) estas elektrizita pozitive; A negative. Aŭ prefereble B estas elektrizita plus; A, minus. En unu el aliaj leteroj de Benjamin Franklin senditaj al Petro Collinson: letero 2 de Benjamin Franklin, Esq.; Filadelfio al Peter Collinson, Esq.; F. R. S. Londono, 1747.
  3. C.-A. Kulombo, "Unua Memuaro pri Elektro kaj Magnetismo," Historio de la Reĝa Akademio de Sciencoj, 569-577, 1785 "Dua Memuaro pri Elektro kaj Magnetismo," Historio de la Reĝa Akademio de Sciencoj, 578-611, 1785 "Tria Memuaro pri Elektro kaj Magnetismo," Historio de la Reĝa Akademio de Sciencoj, 612-638, 1785. Vidu ankoraŭ "Kolekto da artikoloj rilataj al fiziko,...volumo I, Memuaroj de Kulombo" p. 146, kie Kulombo konkudis: Que l'action, soit répulsive, soit attractive de deux globes électrisés et, par conséquent, de deux molécules électriques, est en raison composée des densités du fluide électrique des deux molécules électrisées et inverse du carré des distances (Ke ago , aŭ forpuŝa, aŭ altira de du elektrizita globoj kaj, sekve, de du elektraj molekuloj, estas proporcia al la densecoj de la elektra fluidaĵo en la elektrizitaj molekuloj kaj inverse proporcia al la kvadrato de la distanco). (france)
  4. Carl Friedrich Gauss, "Teorio de altiro de homogenaj sferaj korpoj, je marto 1813, en Werke, volumo 5, paĝoj 3-24 en Universitätsbibliothek Göttingen - Digitalisierungszentrum (germane)
  5. La "teoremo de Stokes" estis fakte trovita de William Thomson; vidu ankaŭ paĝojn en:Stokes' theorem kaj Teoremo de Stokes.

Bibliografio[redakti | redakti fonton]

Eksteraj ligiloj[redakti | redakti fonton]