Saltu al enhavo

Lipido

Nuna versio (nereviziita)
El Vikipedio, la libera enciklopedio

Lipidoj (greke λίπος, lipos, kiu signifas graso, aŭ grasoj) estas organikaj kombinaĵoj vaste disvastigitaj en naturo, kaj reprezentas unu el la kvar ĉefaj klasoj de organikaj kombinaĵoj kun biologia intereso, kune kun karbonhidratoj, proteinoj kaj nukleataj acidoj.

Lipidoj estas identigitaj surbaze de siaj komunaj solveblecaj ecoj: ili ne estas solveblaj en akvo (ili estas difinitaj kiel hidrofoba), dum ili estas solveblaj en organikaj solvantoj kiel etila acetato, duetila eteroacetono, alkoholoj kaj hidrokarbonidoj. La nesolvebleco en akvo estas la analiza propraĵo uzata kiel bazo por la disiĝo de karbonhidratoj kaj proteinoj. El la struktura vidpunkto, lipidoj ĉefe konsistas je karbonaj kaj hidrogenaj atomoj kunigitaj inter ili per kovalentaj ligoj malforte polusaj (karakterizaĵo, kiu donas al ili la hidrofoban konduton) kaj simetrie aranĝitaj.

Tamen iuj lipidoj havas polusajn grupojn (ekz. La Fosfolipidoj) en limigita regiono de sia molekulo. Polusaj lipidoj havas fizik-kemiajn karakterizaĵojn apartajn al neŭtralaj (kaj do nepolusaj) lipidoj. Aparte, la polusaj lipidoj montras amfipatajn karakterizaĵojn (t. e., solvebleco kaj en akvo kaj en nepolusaj solvantoj) aŭ eĉ foje ili estas nesolveblaj en organikaj solvantoj kaj solveblaj en akvo.

En 1854, Marcellin Berthelot sintezis la tristearinon.

La lipido povas esti rigardataj kiel organikaj substancoj relative nesolveblaj en akvo, solveblaj en organikaj solvantoj (alkoholo, etero, ktp.) efektive aŭ potence rilataj al la grasaj acidoj kaj uzataj de la vivantaj ĉeloj.

En 1815, Henri Braconnot klasifikis lipidojn (graisses) en du kategoriojn, suifs (solidaj grasoj aŭ sebo) kaj huiles (fluidaj oleoj). En 1823, Michel Eugène Chevreul disvolvis pli detalan klasifikon, inkluzivante oleojn, grasojn, sebojn, vaksojn, rezinojn, balzamojn kaj volatilajn oleojn (aŭ esencajn oleojn).

La unua sinteza triglicerido estis raportita de Théophile-Jules Pelouze, en 1844, kiam li produktis la “tributirinon” traktante buteratan acidon kun glicerino en ĉeesto de koncentrita sulfata acido. Plurajn jarojn poste Marcellin Berthelot, unu el la lernantoj de Pelouze, sintezis “tristearinon” kaj “tripalmitinon” per reakcio de la analogaj grasaj acidoj kun glicerino en ĉeesto de gasa hidrogena klorido ĉe alta temperaturo.

En 1827, William Prout (1785-1850) agnoskis la grason ("oleajn nutraĵojn"), kune kun proteinojn ("albumino") kaj karbonhidratojn ("saĥarino"), kiel gravajn nutraĵojn por homoj kaj bestoj.

Dum unu jarcento, kemiistoj rigardis "grasojn" kiel nur simplajn lipidojn el grasacidoj kaj glicerino (gliceridoj), sed novaj formoj estis priskribitaj poste. En 1847, Theodore Gobley (1811-1876) malkovris la fosfolipidojn en la mamulaj cerboj kaj kokinaj ovoj, nomata de li kiel lecitinoj. Ludwig Thudichum (1829-1901) malkovris en homa cerbo iujn fosfolipidojn ("cefalinon"), glikolipidojn (cerebrosidon) kaj sfingolipidojn (sfingomielinon).

La terminoj lipoido, lipino, lipide kaj lipido estis uzataj kun diversaj signifoj de aŭtoro al aŭtoro. En 1912, Rosenbloom kaj Gies proponis anstataŭigi "lipoidon" per "lipino". En 1920, Bloor enkondukis novan klasifikon por "lipoidoj": simplaj lipoidoj (grasoj kaj vaksoj), kunmetitaj lipoidoj (fosfolipoidoj kaj glikolipoidoj), kaj la derivitaj lipoidoj (grasacidoj, alkoholoj, steroloj).

La tributirino estis raportata de Théophile-Jules Pelouze, en 1844.

La vorto lipido, kiu devenas etimologie el la greka λίπος, lipos “graso”, estis enkondukita en 1923 de la franca farmakologo "Gabriel Bertrand" (1867-1962). Bertrand inkluzivis en la koncepto ne nur la tradiciajn grasojn (gliceridojn), sed ankaŭ la "lipoidojn", kun kompleksa konstitucio.

Kvankam la vorto lipido estis unuanime aprobita de la internacia komisiono de la “Société de Chimie Biologique” dum la plenkunsido la 3-an de julio 1923. La vorto lipide poste angliĝis kiel “lipido” pro sia elparolo (“lɪpɪd”). En la franca, la sufikso -ide, el la malnovgreka -ίδης (kun la signifo 'filo de' aŭ 'posteulo de'), estas ĉiam prononcata (ɪd).

En 1947, T. P. Hilditch dividis lipidojn en "simplajn lipidojn", kun grasoj kaj vaksoj (veraj vaksoj, steroloj, alkoholoj).

Proprecoj

[redakti | redakti fonton]

La lipidoj estas ĝenerale senkoloraj, oleaj al la tuŝo, ne tre konsistemaj, havas pli malaltan densecon ol akvo, en kiu ili estas nesolveblaj sed emulsieblaj. Ili estas malmulte solveblaj en etanolo kiam malvarmaj, sed solveblaj kiam varmaj.

Ili estas solveblaj en karbona dusulfido, kloroformo, duetila etero, acetono, benzeno, benzino kaj aliaj organikaj solvantoj. Ili lasas grasajn, diafanajn makulojn sur papero, kiuj ne malaperas kun varmo. Ili ne distileblas hejte aŭ per malalta premo kaj malkombiniĝas hejte.

Ĉar la grasoj estas uzataj en la fritado-procezo kaj poste preparataj en malfermaj ujoj ĉe alta temperaturo (180 - 200 °C), estas rekta kontakto kun la aero. Ĉi tiuj kondiĉoj donas fizikokemiajn ŝanĝojn en oleoj (kiel termo-oksidado kaj ranceco), iuj el kiuj rimarkiĝas per la malheliĝo de la grasoj, la pliigo de viskozeco, la formado de ŝaŭmo kaj la produktado de fumo.

Ĉi tiuj transformoj influas la guston, kiun fritado donas al frititaj produktoj, malfaciligante la akcepteblon de la produktoj, sed ili ankaŭ produktas toksajn efikojn kiel gastro-intesta irito, enzimo-inhibicio, vitamino-detruado kaj karcinomogenezo, kiam okazas la kontinua kaj longedaŭra ingestado de kemie ŝanĝitaj rancigitaj produktoj.

Kategorioj

[redakti | redakti fonton]

La organizo Lipid MAPS,[1] klasigis la lipidojn en ok kategorioj:

Grasacidoj

[redakti | redakti fonton]
Pli detalaj informoj troveblas en artikolo Grasacido.
I2 - Prostailina (ekzemplo de prostaglandino, grasacido eikosanoido).
LTB4 (ekzemplo de leŭkotrieno, grasacido eikosanoida).

La grasacidoj, aŭ fragmentoj de grasacidoj kiam formas parton de lipido, estas diversa grupo de molekuloj sintezitaj per longigo de ĉeno de Acetila koenzimo A unu per Malonila koenzimo A aŭ grupoj Metilmalonila koenzimo A, en procezo nomita sintezo de grasacido. Ili estas faritaj de hidrokarbido en ĉeno kiu finas je grupo de karboksilata acido; tiu aranĝo havigas al la molekulo polusan, hidrofilan finaĵon, kaj nepolusan, hidrofoban kiu estas nesolvebla en akvo. La strukturo de la grasacidoj estas de unu el la plej fundamentaj kategorioj de biologiaj lipidoj kaj ĝi estas ĝenerale uzita kiel blokoj de lipidoj strukture pli kompleksaj. La ĉeno de karbono, tipe inter kvar kaj du dek kvar karbonoj longa, kiuj povas esti saturitaj aŭ nesaturitaj, kaj povas esti ligitaj al funkciaj grupoj kiuj enhavas oksigenon, halogenojn, nitrogenon, kaj sulfuron. Se grasacido enhavas duoblan ligon, ekzistas la eblo de ajna geometria izomerismo cistrans, kiu ege tuŝas la formon de la molekulo. La duoblaj ligoj cis okazigas, ke la ĉeno de grasacido duobliĝa, efiko kiu pliiĝas kiam estas pli da duoblaj ligoj en la ĉeno. Tri duoblaj ligoj en la karbono-18 de la linolena acido, nome la plej abunda grasacido en la ĉenoj de la tilakoidaj membranoj de la plantoj, faras tiujn membranojn tre fluecaj spite la malaltajn mediajn temperaturojn, kaj faras ankaŭ ke la linolena acido havas akutajn pintojn en la spektroj 13-C NMR de alta rezolucio de kloroplastoj. Tial ĝi ludas gravan rolon en la strukturo kaj funkcio de ĉelaj membranoj.[2] La plej ofta formo en kiu montriĝas la grasacidoj, estas la formo cis, spite la fakton ke la formo trans ekzistas en kelkaj grasoj kaj naturaj oleoj parte hidrogenhavaj.

Inter la grasaacidoj biologie gravaj estas la eikosanoidoj, derivitaj ĉefe de la arakidonata acido kaj de la eikosapentaenoiko acido, kiuj inkludas prostaglandinojn, leŭkotrienojn kaj tromboksanojn. Ankaŭ la dokosaheksaenoika acido gravas en la biologiaj sistemoj, aparte en tio rilata kun la vidkapablo.[3][4] Aliaj gravaj klasoj de lipidoj en la kategorio de grasacidoj estas la grasaj esteroj kaj la grasaj amidoj. La grasaj esteroj inkludas gravajn biokemiajn perantojn kiel vaksoesteroj, derivitaj de koenzimo A de tioestero de grasacidoj, derivitaj de Acil-(protein-transport-acilo) desaturazo de tioestero de grasacidoj kaj karnitinoj de grasacidoj. La grasaj amidoj inkludas N-acil-etanolaminojn, kiel la neŭrotransmisoro kanabinoida anandamido.

Trigliceridoj

[redakti | redakti fonton]
Ekzemplo de natura trilicerido kun tri malsamaj grasacidoj. Unu el la grasacidoj estas saturita (la blua), alia enhavas unu duobla ligo ene de la karbona ĉeno (la blue desegnita), La tria grasacido (iu poliinsaturita grasacido, ruĝe desegnita) enhavas tri duoblajn ligojn ene de la karbona ĉeno. Ĉiuj karbon-karbonaj duoblaj ligoj montrataj estas cis izomeraj.

Trigliceridojtriacil-glicerinoj estas triesteroj de longĉenaj grasacidoj kun glicerolo (ankaŭ nomata glicerino); ili estas la plej simplaj lipidoj, sed ankaŭ la plej abundaj el natura origino, kaj konsistigas bestajn grasojn (solidajn) kaj vegetalajn oleojn (likvaĵojn). Ili ĉefe servas kiel deponejo por la energio produktita kaj stokita en bestoj en la nivelo de grasa histo (subkutana kaj viscera graso).

Triglicerido estas lipido konsistanta el glicerina molekulo al kiu estas ligitaj tri grasacidoj. Glicerino (1,2,3-propantriolo) estas alkoholo kun tri karbonatomoj, ĉiu kun hidroksila grupo, dum la grasa acido konsistas el karboksila grupo kaj hidrokarbona ĉeno. La tri grasacidoj estas kunigitaj al glicerina molekulo per esterigado, do per ligo inter la karboksila grupo de grasacidoj kaj la hidroksilaj grupoj de glicerino. Ofte la tri grasaj acidoj diferencas.

Grasaj acidoj estas la plej simplaj kaj ordinaraj lipidoj, kaj diferencas laŭ la longo de la karbona ĉeno kaj/aŭ la tipo de ligo inter la karbonaj atomoj, ligoj, kiuj ĉiuj povas esti simplaj, kaj tiam oni parolas pri saturitaj aŭ duoblaj grasaj acidoj, kaj ĉi-kaze ni parolas pri nesaturitaj grasaj acidoj (unusaturitaj se estas nur unu duobla ligo, plurinsaturitaj se alie). Pli ol 500 specoj de grasacidoj estis izolitaj de diversaj ĉeloj kaj histoj, kaj videblas, ke ili preskaŭ ĉiam havas paran nombron da karbonaj atomoj, kutime inter dudek kaj dekdu.

Esencaj grasaj acidoj estas plurinsaturitaj grasaj acidoj, kiuj ne povas sinteziĝi en la korpo. Ili apartenas al du ĉefaj kategorioj, bazitaj sur la pozicio de la unua duobla ligo: ω3 (αlinoleniko 18:3) kaj ω6 (linolejka acido 18:2). La arakidonata acido (20:4), sintezita el linolejka acido, estas la antaŭulo de "prostaglandinoj", tromboksanoj kaj leŭkotrienoj, tre gravaj kemiaj perantoj implikitaj en inflamo kaj plaka agregado. Dietoj altaj je saturitaj grasoj kondukas al aterosklerozo.

Ekzemplo de triglicerido nesaturita grasa (C55H98O6). Maldekstre: glicerino; dekstre, de supre malsupren: palmitata acido, oleata acido, alfa-linolenata acido.

La nesaturitaj grasacidoj, kiam en la cis-konfiguracio, kreas angulon de la molekulo (flekseco). La solida aŭ likva stato de la grasoj, ĉe media temperaturo, dependas de la grado de nesaturiĝo (nombro de duoblaj ligoj) de la grasaj acidoj, kiuj konsistigas la trigliceridojn. La anguloj de la nesaturitaj grasoj malhelpas la molekulojn kompaktiĝi firme kaj solidiĝi ĉe media temperaturo. Ĉar oleoj havas pli grandan nombron da nesaturitaj grasaj acidoj, ilia fandiĝa temperaturo estas malalta kaj ili estas en likva stato.

La plejmulto el la vegetalaj grasoj konsistas je nesaturitaj oleoj, la nesaturitaj grasoj regas ĉe fiŝoj kaj la saturitaj ĉe teraj bestoj. Ĉe malvarmsangaj bestoj, kiel fiŝoj, la ĉeesto de nesaturitaj grasacidoj permesas al la grasoj konservi sian fluecon eĉ en ĉeesto de malaltaj temperaturoj.

Ĉar la temperaturo de la subhaŭta grasa histo estas pli influata de la ekstera temperaturo, eĉ mamuloj eksponitaj al aparte malvarmaj klimatoj, kiel fokoj, havas subhaŭtan grason riĉan je plurinsaturaj grasacidoj, kio permesas konservi la dikan supraĵan grasan mantelon en fluida kondiĉo, certigante ampleksan moviĝ-liberecon, kiu estus rifuzita, se la subhaŭta grasa histo estus tro rigida, pro la tropezo de saturitaj grasaj acidoj.

La duoblaj ligoj povas esti "atakataj" de la oksigeno en la aero kaj la oksidativa rompado de ĉi tiuj ligoj rezultigas la formadon de aldehidoj kaj acidoj de malalta molekula pezo, kun akra odoro, respondeca pri la ranceco de grasoj. La reakcio de duoblaj ligoj kun oksigeno kaŭzas la formadon de hidroperoksidoj, same kiel al la flanka interligo inter la ĉenoj de grasaj acidoj kaj ilia polimerigo.

La polimerigo, kaŭzata de la aero, ebligas uzi oleojn kun alta grado de nesaturiĝo (ekz. Linoleo) kiel sekigajn oleojn en la farba industrio de vestaĵoj. La duoblaj ligoj ĉeestantaj en plantaj oleoj povas esti reduktitaj al ununuraj ligoj per kataliza hidrogenado, por produkti solidajn vegetalajn grasojn, kiel margarino.

Komerca avantaĝo de hidrogenigo estas akiri pli longan storigan vivotempon (surbreta). Male, malavantaĝo de parta hidrogenado estas reprezentata de la trans izomerigo de iuj postrestantaj duoblaj ligoj, en procento de ĉirkaŭ 10-15%. Trans-ligitaj lipidoj pliigas kolesterolon kaj riskon de kardiovaskula malsano.

Glicerofosfolipidoj

[redakti | redakti fonton]
Fosfatidiletanolamino.

La glicerofosfolipidoj, kutime estas referencitaj kiel fosfolipidoj (tamen ankaŭ la sfingomjelino estas klasigita kiel fosfolipidoj), estas ĉieaj laŭ naturo kaj estas ŝlosilaj komponantoj de la ĉela lipida dutavolo, partoprenas en la metabolo kaj en la ĉela komunikado.[5] La neŭrona histo (inklude la cerbon) enhavas relative grandajn kvantojn de glicerofosfolipidoj, kaj la ŝanĝoj en ties kompono estis asociaj al kelkaj neŭrologiaj misordoj.[6] La glicerofosfolipidoj estas subdivideblaj en diversaj klasoj, bazitaj sur la polusa naturo de la grupo de la pozicio sn-3 de la glicerina vertebraro en eŭkariotoj kaj eŭbakterioj, aŭ la pozicio sn-1 en la kazo de arkeobakterioj.

Ekzemploj de glicerofosfolipidoj estas en la biologiaj membranoj nome fosfatidilkolino (konata ankaŭ kiel PC, GPCho aŭ lecitino), fosfatidiletaanolamino (PE aŭ GPEtn) kaj fosfatidilserino (PS aŭ GPSer). Krom utili kiel unuarangaj komponantoj de la ĉelaj membranoj kaj ligejoj por proteinoj intra- kiaj inter-ĉelaj, kelkaj glicerofosfolipidoj en eŭkariotaj ĉeloj, kiel fosfatidilinositoloj kaj fosfatida acido estas antaŭaĵoj aŭ ili mem derivitaj de "duarangaj mesaĝistoj" de la membranoj.[7]

Esfingolípidos

[redakti | redakti fonton]
Esfingomielina.

Los esfingolípidos son una familia compleja de compuestos que participación una característica estructural común, una base esfingoide es sintetizada de novo del aminoácido serina y una cadena grasa larga de acyl CoA, convertido entonces a ceramidas, fosfoesfingolipidos, glicoesfingolipidos y otros compuestos.[8] La principal la base esfingoide de los mamíferos es generalmente mencionada como esfingosina. Ceramides (Base N-acyl-esfingoide) son una subclase importante de esfingoides derivados de un enlace amida ácido graso. Los ácidos grasos están típicamente saturados o mono-insaturados con longitudes de cadena de 16 a 26 átomos de carbono.[9]

Los fosfoesfingolipidos importantes de los mamíferos son efingomielinas (ceramida, fosfocolinas), mientras que los insectos contienen principalmente ceramida fosfoetanolaminas y los hongos tienen fosfoinositoles y grupos principales que contienen manosa. Los glicosfingolipidos son una familia diversa de moléculas compuestas de uno o más residuos de azúcar enlazaron vía un enlace glucosídico a la base esfingoide. Ejemplos de estos es el sencillo y complejo glicoesfingolipides como cerebrósidos y gangliósidos.

Esteroloj

[redakti | redakti fonton]
Chemical diagram
Kemia strukturo de la kolesterolo.

Los esteroles, como el kolesterolo y sus derivados, son componentes importantes de lípidos de membrana, junto con los glicerofosfolipidos y esfingomielinas. Otros ejemplos de esteroles son los ácidos biliares y sus conjugados, los cuales en mamíferos son derivados oxidados del colesterol y son sintetizados en el hígado. Los equivalentes en las plantas son los fitosteroles, como el β-sitosterol, estigmasterol, y brassicasterol; este último es también utilizado como biomarcador para el crecimiento del alga. El esterol predominante en las membranas de las células fungi es ergosterol.

Sterols Es esteroides en cuál de los átomos de hidrógeno está sustituido con un hydroxyl grupo, en posición 3 en la cadena de carbono. Han en común con los esteroides igual fusionaron núcleo de cuatro anillos estructura. Los esteroides tienen funciones biológicas diferentes como hormonoj y moléculas de señalización. El dieciocho-carbono (C18) los esteroides incluyen el estrogen familia mientras que los #C19 esteroides comprenden el androgens como testosterona y androsterone. La C21 subclase incluye el progestogens así como los glucocorticoides y mineralocorticoids.[10] El secosteroids, comprendiendo varias formas de vitamina D, está caracterizado por cleavage del B anillo de la estructura de núcleo.

Lípido prenol (2E-geraniol).

Los lípidos de prenol son sintetizados de precursores de unidades de cinco carbonos de isopentenil difosfato y dimetilalil difosfato que se producen principalmente vía ácido mevalónico (MVA). Los isoprenoides sencillos (alcoholes lineales, difosfatos, etc.), se forman por la adición sucesiva de unidades C5, y se clasifican según número de estas unidades de terpeno. Las estructuras grandes que contienen más de 40 carbonos se conocen como politerpenos. Los carotenoides son importantes isoprenoides sencillos que tienen función como antioxidantes y como precursores de vitamina A. Otra clase biológicamente importante de moléculas está ejemplificada por las quinonas e hidroquinonas, los cuales contienen un isoprenoide sujeto a la cola quinonoide núcleo de origen no isoprenoide. La vitamina E y la vitamina K, así como las ubiquinonas, son ejemplos de esta clase. Las procariotas sintetizan poliprenoles (llamados bactoprenoles) en el que la unidad isoprenoide terminal permanece unida al oxígeno, mientras que en los animales poliprenoles (dolicoles) la terminal isoprenoide está reducida.

Sakarolipidoj

[redakti | redakti fonton]
Estructura del saccharolípido Kdofracciones de 2-lípido A Glucosamine en azul, fracciones Kdo en rojo, cadenas de acilol en negros y grupos de fosfato en verde.

Los sacarolípidos describen compuestos en los cuales los ácidos grasos están enlazados a un esqueleto de azúcar, la conformación de esta estructura es compatible con bicapas de membrana. En los sacarolípidos, unos sustitutos de monosacárido para el esqueleto glicerol presente en glicerolipidos y glicerofosfolipidos. El sacarolípido más familiar es la glucosamina acilada precursores del Lípido A componente del lipopolisacáridos en bacterias Gram-negativas. La composición típica del lípido A son moléculas disacáridos de glucosamine, los cuales son derivatizados cuando mucho de siete cadenas de graso-acil. El mínimo lipopolisacárido requerido para crecimiento en E. coli es Kdo2-Lípido A, un disacárido hexa-acilado de glucosamina el cual es glicosilado con dos fragmentos de ácido 3-deoxi-D-manno-octulosónico (Kdo).

Policétidos

[redakti | redakti fonton]

Los policétidos se sintetizan mediante la polimerización de subunidades de acetilo y propionilo mediante enzimas clásicas, así como enzimas iterativas y multimodulares que comparten características mecánicas con las sintasas de ácidos grasos. Comprenden muchos metabolitos secundarios y productos naturales de origen animal, vegetal, bacteriano, fúngico y marino, y tienen una gran diversidad estructural.[11][12] Muchos policétidos son moléculas cíclicas cuyas cadenas principales a menudo se modifican más mediante glicosilación, metilación, hidroxilación, oxidación u otros procesos. Muchos agentes antimicrobianos, antiparasitarios y anticancerosos de uso común son policétidos o derivados de policétidos, como eritromicinoj, tetraciklinoj, avermektinoj y epotilonas antitumorales.[13]

Prostaglandinoj

[redakti | redakti fonton]
Alprostadil E1.
Pli detalaj informoj troveblas en artikolo Prostaglandinoj.

Prostaglandinoj[14] (PG) estas grupo de fiziologie aktivaj lipidaj kunmetaĵoj nomataj eikosanoidoj[15] kiuj havas diversajn hormono-similajn efikojn ĉe bestoj. Laŭ la difino de PIV temas pri lipido, sekreciata de ĉeloj de mamuloj, do ankaŭ homoj, aganta al la najbaraj ĉeloj kiel interĉela mesaĝanto: prostaglandinoj rolas interalie en la kontrahiĝo de la glatfibraj muskoloj, ekz. dum akuŝo. Prostaglandinoj estis trovitaj en preskaŭ ĉiu histo en homoj kaj aliaj bestoj. Ili estas derivitaj enzime de la grasacido arakidonata acido. Ili estas subklaso de eikosanoidoj kaj de la prostanoida klaso de grasacidaj derivaĵoj.

Biosintezo

[redakti | redakti fonton]

Ĉe bestoj, kiam ekzistas troa provizo de karbonhidrato en la dieto, la troo de karbohidrato transformiĝas en trigliceridojn. Ĉi tio implikas la sintezon de grasaj acidoj ekde la Acetila koenzimo A kaj la esterigo de la grasaj acidoj en la produktado de trigliceridoj, ia procezo nomita lipogenezo. Grasaj acidoj estas produktitaj per grasacidaj sintazoj, kiuj polimeriĝas kaj tiam reduktas la unuojn de Acetila koenzimo A.

La acilaj ĉenoj en la grasaj acidoj estas etenditaj per ciklo de reakcioj, kiuj aldonas la acetilan grupon, reduktas ĝin al alkoholo, senakvigas ĝin al alkena grupo kaj poste reduktas ĝin denove al alkana grupo. La enzimoj de grasacida biosintezo estas dividitaj en du grupojn, ĉe bestoj kaj fungoj, ĉiuj ĉi tiuj reakcioj de la grasaj acidaj sintazoj estas kreataj de unusola multifunkcia proteino dum en plantaj plastidoj kaj bakterioj apartaj enzimoj plenumas ĉiun paŝon en la vojo. La grasaj acidoj povas poste esti transformitaj al trigliceridoj, kiuj estas pakitaj en lipoproteinoj kaj sekreciataj de la hepato.

La sintezo de la nesaturitaj grasacidoj implikas en reakcion de malsaturigo, per kio duobla ligo estas enkondukita en la acila ĉeno de la grasacido. Ekzemple, ĉe homoj, la malsaturiĝo de steareata acido per stearoila-Koenzimo A-desaturazo-1 produktas olean acidon. La linolejka acido, kiu estas duoble nesaturita grasacido, same kiel la trioble nesaturita α-linolenika acido ne povas sinteziĝi en mamulaj histoj, kaj tial ili estas esencaj grasaj acidoj kaj devas esti akiritaj de la dieto.

La sintezo de trigliceridoj okazas en la endoplasma retikulo per metabolaj vojoj, en kiuj la acilaj grupoj de la grasaj acetila-Koenzimoj-A estas transdonitaj al la hidroksilaj grupoj de glicerino-3-fosfato kaj diacilglicerolo.

La terpenoj kaj izoprenoidoj, inkluzive de la karotenoidoj, estas faritaj per la asembleo kaj modifo de izoprenaj unuoj donacitaj de la reaktivaj antaŭuloj izopentenila pirofosfato kaj dumetil-alila pirofosfato. Ĉi tiuj antaŭuloj povas esti faritaj diversmaniere.

Ĉe bestoj kaj archaeoj, la mevalonata vojo produktas ĉi tiujn komponaĵojn ekde la acetil-Koenzimo-A, dum ĉe plantoj kaj bakterioj la ne-mevalonata vojo uzas piruvaton kaj gliceraldehidan 3-fosfaton kiel substratojn. Unu grava reakcio, kiu uzas ĉi tiujn aktivigitajn izoprenajn donantojn, estas la biosintezo de steroidojn. Ĉi tie, la izoprenaj unuoj estas kunigitaj por fari la skvalenon kaj poste kunfalditaj kaj formitaj en aron da ringoj por krei lanosterolon. Tiam a lanosterolo povas esti konvertita en aliajn steroidojn kiel la kolesterolon kaj ergosterolon.

Vidu ankaŭ

[redakti | redakti fonton]

Referencoj

[redakti | redakti fonton]
  1. (Abril de 2009) “Update of the LIPID MAPS comprehensive classification system for lipids”, Journal of Lipid Research 50 (S1), p. S9–14. doi:10.1194/jlr.R800095-JLR200. 
  2. Devlin, pp. 193–195.
  3. «A Long Lipid, a Long Name: Docosahexaenoic Acid». The Lipid Chronicles. 2a de decembro 2011.
  4. «DHA for Optimal Brain and Visual Functioning». DHA/EPA Omega-3 Institute.
  5. «The Structure of a Membrane». The Lipid Chronicles. 5a de novembro 2011. Konsultita la 31an de decembro 2011.
  6. «Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders». Chemistry and Physics of Lipids 106 (1): 1-29. Junio 2000. PMID 10878232. doi:10.1016/S0009-3084(00)00128-6.
  7. van Holde kaj Mathews, p. 844.
  8. Ŝablono:Cita libro
  9. Devlin, pp. 421–422.
  10. Stryer et al., p. 749.
  11. Walsh CT (March 2004). "Polyketide and nonribosomal peptide antibiotics: modularity and versatility". Science. 303 (5665): 1805–10. Bibcode:2004Sci...303.1805W. doi:10.1126/science.1094318. PMID 15031493. S2CID 44858908.
  12. Caffrey P, Aparicio JF, Malpartida F, Zotchev SB (2008). "Biosynthetic engineering of polyene macrolides towards generation of improved antifungal and antiparasitic agents". Current Topics in Medicinal Chemistry. 8 (8): 639–53. doi:10.2174/156802608784221479. PMID 18473889.
  13. Minto RE, Blacklock BJ (July 2008). "Biosynthesis and function of polyacetylenes and allied natural products". Progress in Lipid Research. 47 (4): 233–306. doi:10.1016/j.plipres.2008.02.002. PMC 2515280. PMID 18387369.
  14. artikolo prostaglandino en la Plena Ilustrita Vortaro de Esperanto (PIV), eldono de 2020, reta versio
  15. Eikosanoida Sintezo kaj Metabolo: Prostaglandinoj, Tromboksanoj, Leukotrienoj, Lipoksinoj. Alirita 2018-09-21. (angle)