Tanĝa spaco

El Vikipedio, la libera enciklopedio
Salti al navigilo Salti al serĉilo

En diferenciala geometrio, la tanĝa spaco estas vektora spaco asociita al punkto en glata sternaĵo, kiu konsistas el la vektoroj tanĝaj al la sternaĵo, se la sternaĵo estus subspaco de Eŭklida spaco.

Difino[redakti | redakti fonton]

Se estas glata sternaĵo, derivo ĉe sur la alĝebro de glataj funkcioj estas lineara bildigo

kiu plenumas la jenan aksiomon:

  • (Lejbnica idento) pri ĉiuj ajn , do .

La derivoj sur la alĝebro de glataj funkcioj konsistigas reelan vektoran spacon; tiu reela vektora spaco estas la tanĝa spaco de ĉe .

Propraĵoj[redakti | redakti fonton]

La tanĝa spaco de -dimensia glata sternaĵo ĉe ajna punkto estas -dimensia reela vektora spaco; tial, tanĝaj spacoj ĉe malsamaj punktoj estas ĉiam izomorfaj. Sed, sen plia strukturo (nome, konekto sur la tanĝa fasko kaj kurbo inter la du punktoj), tiu izomorfio ne estas kanona.

Eksteraj ligiljo[redakti | redakti fonton]