Algoritmo de Bresenham

El Vikipedio, la libera enciklopedio
Saltu al: navigado, serĉo

Algoritmo de Bresenham estas algoritmo kiu kalkulas plej bonan aproksimon de kurbo en 2D spaco.

Priskribo de algoritmo[redakti | redakti fonton]

Lemoj de algoritmo[redakti | redakti fonton]

  • Angulo inter tanĝanto kaj akso OX estas malpli granda ol 45°
  • Se kurbo ne havas funkcion en formo y=f(x), ĝi povas havi  0<f'(x)\leq1
  • funkcio de kurbo povas esti unutona funkcio kaj ne kreskanta kaj ne malkaresanta.

Algoritmo[redakti | redakti fonton]

AlgoritmoDeBresenham Punkto.png

Kurbo estas en intervalo  [x_i, x_k ]. Unua rastrumero estas en punkto P(x_i;y_i) Sekve estas nur du ebloj: punkto A (x_i + 1 ; y_i) kaj punkto B(x_i+1 ; y_i+1). Nun oni povas kalkuli, kiu elambaŭ punktoj estas pli proksima al la reala loko de kurbo. Mezuro por la distanco estas:

d_i = dx( |AC|-|CB|) = 2dy(x_i - x_o) - 2dx(y_i - y_o) + 2dy - dx

kie:
dx = x_k - x_i
dy = y_k - y_i
C = (x_0,y_0)

Se d_i > 0 punkto A estas proksima, se ne punkto B estas.

Oni kalkulas:

d_{i+1} = 2 dy ( x_{i+1}-x_0 )-2 dx (y_{i+1} -y_0)+2 dy - dx

kaj subtraho inter d_{i+1} kaj d_i:

d_{i+1} -d_i = 2 dy (x_{i+1} -x_i) - 2dx (h_{i+1} - y_i)

alinome:

d_{i+1} = di + 2dy - 2dx(y_{i+1}- y_i)

Se d_i >= 0 oni elektas punkton B, do:

d_{i+1} = d_i +2 (dy-dx)

Kaj se  d_i < 0 oni elektas punkton A, do: d_{i+1} = d_i + 2dy Ĉar formulo estas rikura do restas kalkulenda d_0:

 d_0 = 2dy - dx

Realigo de algoritmo[redakti | redakti fonton]

Java[redakti | redakti fonton]

C/C++[redakti | redakti fonton]

 // x1 , y1 − 
 // x2 , y2 − 
 void BresenhamLine(const int x1, const int y1, const int x2, const int y2) { 
     // 
     int d, dx, dy, ai, bi, xi, yi;
     int x = x1, y = y1;
     // 
     if (x1 < x2) { 
         xi = 1;
         dx = x2 - x1;
     } else{ 
         xi = -1;
         dx = x1 - x2;
     }
     // 
     if (y1 < y2) { 
         yi = 1;
         dy = y2 - y1;
     } else { 
         yi = -1;
         dy = y1 - y2;
     }
     // 
     glVertex2i(x, y);
     // 
     if (dx > dy) {
         ai = (dy - dx) * 2;
         bi = dy * 2;
         d = bi - dx;
         //
         while (x != x2) { 
             // 
             if (d > 0) { 
                 x += xi;
                 y += yi;
                 d += ai;
             } else {
                 d += bi;
                 x += xi;
             }
             glVertex2i(x, y);
         }
      //
     } else { 
         ai = ( dx - dy ) * 2;
         bi = dx * 2;
         d = bi - dy;
         // 
         while (y != y2) { 
             // 
             if (d > 0){ 
                 x += xi;
                 y += yi;
                 d += ai;
             } else{
                 d += bi;
                 y += yi;
             }
             glVertex2i(x, y);
         }
     }
 }

Pascal[redakti | redakti fonton]

 Procedure Linia(x1,y1,x2,y2,Kolor : integer);
 var c,i : integer;
    ŝ,sy,y,x : real;
  begin
 { if x2<x1 then    {ĉi tiu kondiĉo ne povas krei '''linio kiu aspektas kiel kreskanta funkcio'''!!!} 
  begin
   c:=x1;
   x1:=x2;
   x2:=c;
  end;
  if y2<y1 then
  begin
   c:=y2;
   y2:=y1;
   y1:=c;
  end; }
  if (x2-x1)>(y2-y1) then
  begin
    sy:=(y2-y1)/(x2-x1);
    y:=y1;
    for i:=x1 to x2 do 
    begin
      putpixel(i,round(y),Kolor);
      y:=y+sy;
    end;
  end else
  begin
    sx:=(x2-x1)/(y2-y1);
    x:=x1;
    for i:=y1 to y2 do 
    begin
      putpixel(round(x),i,Kolor);
      x:=x+sx;
    end;
  end;
 end;