Ĉina restteoremo estas la nomo de multaj similaj teoremoj de abstrakta algebro kaj nombroteorio.
Simultana kongrueco de entjeroj estas sistemo de linearaj kongruecoj

por kiu ĉuij
estu trovita, kiuj solvas ĉiujn kongruecojn samtempe. Se solvo
ekzistas kaj oni difinas
("pmko" signifas la plej malgrandan komunan oblon), la aro
enhavas ĉiujn solvojn. Sed ankaŭ eblas, ke nenio solvo ekzistas.
La origina versio de la restteoremo (el la libro La kompendio de aritmetiko de Sūn Zǐ de la ĉina matematikisto Sūn Zǐ) deklaras eldiron pri simultanajn kongruecojn en la kazo, ke la moduloj estas reciproke primaj. Ĝi tekstas:
estu popare reciproke primaj entjeroj. Tiam por ĉiu entjera opo
ekzistas entjero
, kiu solvas la jenan simultanan kongruecon:
kun 
Ĉiuj solvoj por tiu kongrueco estas kongrua module
.
Tiu produto
egalas al la PMKO kaŭze de reciproka primeco.
Trovado de unu solvo
Unu solvo
povas esti trovita jen: Por ĉiu
la nombroj
kaj
estas reciproke primaj, do oni povas trovi du nombrojn
kaj
, ekzemple kun la etendita eŭklida algoritmo, kun la propreco
.
Se oni metas
, tiam validas

.
Tiam la nombro

estas solvo por la simultana kongrueco.
Ekzemplo
Estu serĉata entjero
kun la propreco

Ĉi tie validas
.
Kun helpo de etendita eŭklida algoritmo oni kalkulas
, do 
, do 
, do 
Tiam unu solvo estas
. Kaŭze de
ĉiuj aliaj solvoj estas kongruaj al 47 module 60.
Ankaŭ ĉe la kazo, ke la moduloj ne estas reciproke primaj, ekzistas solvo kelkfoje. La ekzakta kondiĉo tekstas:
Solvo por la simultana kongrueco ekzistas strikte tiam, se por ĉiuj
validas:
.
Ĉiuj solvoj estas kongruaj module la PMKO de
.
En la kazo, ke solvo ekzistas, unu simultana kongrueco povas esti solvita ekzemple per iom post iom substituo, ankaŭ se la moduloj ne estas reciproke primaj.
Ekzemplo
La celo de unu klassika enigmo estas trovi la malplej grandan naturalan nombron, kiu ĵetas la reston 1 ĉe dividado kun resto kun 2, 3, 4, 5 kaj 6, kaj estas dividebla kun 7. Do oni serĉas la malplej grandan pozitivan solvon
de la simultana kongrueco.

Ĉar la moduloj ne estas reciproke primaj, oni ne povas apliki la ĉinan restteoremon senpere.
Sed oni povas kunigi la unuan kvin kondiĉojn al
, kiu signifas, ke solvo estu trovita por

Tiu sistemo de kongruecoj nun solveblas kun la ĉina restteoremo.
Rekta solvado de simultanaj kongruecoj de entjeroj[redakti | redakti fonton]
La jenaj ambaŭ kongruecoj estu donita:

Se tiuj solveblas, do
, ili estas ekvivalenta je la simpla kongrueco:

kun
.
Tio funkcias ankaŭ kiam la nombroj n kaj m ne estas reciproke primaj; tio do estas klara simpligo por solvi simultanajn kongruecojn.
Sistemo de kongruecoj povas esti solvita per refarita aplikado de tiu simpligo.