Triangula nombro

El Vikipedio, la libera enciklopedio
Salti al navigilo Salti al serĉilo
Números triangulares.png

Triangula nombro estas nombro de objektoj, kiun estas eble dismeti laŭ formo de egallatera triangulo. Evidente, ke -a triangula nombro estas sumo de komencaj naturaj nombroj.

La sinsekvo de triangulaj nombroj por komenciĝas tiel:

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120 … — estas la sinsekvo (A000217 en OEIS).

Ecoj[redakti | redakti fonton]

La formuloj por -a triangula nombro:

  • ;
  • ;
  • — estas binoma koeficiento;
Ekzemple, 2016 estas triangula nombro, ĉar: .
  • La rikura formulo por -a triangula nombro:
.
  • Sumo de du sinsekvaj triangulaj nombroj estas kvadrata nombro, tio estas
    .
Ekzemple:
6 + 10 = 16 Square number 16 as sum of two triangular numbers.svg     10 + 15 = 25 Square number 25 as sum of two triangular numbers.svg
  • Ĉiu para perfekta nombro estas triangula[1].
  • Ĉiun nenegativan entjeron eblas prezenti kiel sumo de ne pli ol tri triangulaj nombroj. La tezon unuafoje formulis Fermat en 1638 en sia letero al Mersenne, kaj ĝi estis pruvita en 1796 fare de Gauss
  • La entjero estas triangula se kaj nur se la nombro estas kvadrata nombro.
  • La kvadrato de -a triangula nombro estas la sumo de kuboj de komencaj naturaj nombroj.
  • En la triaj diagonaloj de la triangulo de Pascal troviĝas triangulaj nombroj laŭ ordo.
  • La fama en mistiko la “nombro de la bestio” (666) estas 36-a triangula nombro. Ĝi estas plej malgranda triangula nombro, kiu estas sumo de kvadratoj de aliaj triangulaj nombroj:

Ĝeneraligo[redakti | redakti fonton]

Triangulaj nombroj estas speco de plurlatera nombro.

Vidu ankaŭ[redakti | redakti fonton]

Referencoj[redakti | redakti fonton]

  1. Voight, John Perfect numbers: an elementary introduction // University of California, Berkley. — 1998. — p. 7