Unita matrico

El Vikipedio, la libera enciklopedio
Saltu al: navigado, serĉo

En matematiko, unita matrico estas n×n kompleksa matrico U kontentiganta kondiĉon

U*U = UU* = In

kie In estas la n×n identa matrico kaj U* estas la konjugita transpono (ankaŭ nomata kiel la hermita adjunkta) de U.

Ĉi tiu kondiĉo, laŭ difino de inversa matrico, implicas ke matrico U estas unita se kaj nur se ĝi havas inverson kiu estas egala al ĝia konjugita transpono

U-1 = U*

Unita matrico en kiu ĉiuj elementoj estas reelaj estas orta matrico. Simile al tio kiel orta matrico Q konservas la reelan enan produton de du reelaj vektoroj

= <x, y>

tiel ankaŭ unita matrico U kontentigas

<Ux, Uy> = <x, y>

por ĉiuj kompleksaj vektoroj x kaj y, kie <·, ·> estas la norma ena produto sur Cn.

Se U estas n×n matrico tiam jeno estas ĉiuj ekvivalentaj kondiĉoj:

  • U estas unita
  • U* estas unita
  • La kolumnoj de U formas ortonormalan bazo de Cn kun respekto al ĉi tiu ena produto
  • La linioj de U formas ortonormalan bazon de Cn kun respekto al ĉi tiu ena produto
  • U estas izometrio kun respekto al la normo de ĉi tiu ena produto, kio estas ke multipliko je U konservas longon de ĉiu vektoro x: ||Ux||2=||x||2.
  • U estas normala matrico (kio estas ke U*U = UU*) kun ĉiu el la ajgenoj estas de modulo 1 (i|=1 por i=1...n, kio estas ke ĉiuj ajgeno kuŝas sur unuobla cirklo en kompleksa ebeno).

Propraĵoj de unitaj matricoj[redakti | redakti fonton]

  • Ĉiuj unitaj matricoj estas normala, kaj la spektra teoremo pro tio aplikas al ili. Tial ĉiu unita matrico U havas malkomponaĵon de formo
U = VΣV*
kie V estas unita, kaj Σ estas diagonala kaj unita. Tio estas, unita matrico estas diagonaligebla per unita matrico.
  • La absoluta valoro de determinanto de ĉiu unita matrico estas 1. Ĉi tio sekvas de propraĵoj de determinanto:
1 = det(I) = det(U*U) = det(U*)det(U) = (det(U))*det(U) = |det(U)|2
  • Produto de ĉiuj du unitaj matricoj U kaj V de la sama amplekso estas unita matrico. Pro tio ke U-1 kaj V-1 ekzistas, ekzistas ankaŭ UV-1 kaj
(UV)-1 = V-1U-1

kaj

(UV)* = V*U* = V-1U-1

kaj

(UV)-1 = (UV)*

kaj do UV estas unita.

  • Ĉiu kvadrata matrico estas la averaĝo de du unitaj matricoj. Sekve de tio, ĉiu kvadrata matrico matrico estas lineara kombinaĵo de du unitaj matricoj.
  • Por ĉiu n, la aro de ĉiuj n×n unitaj matricoj kun matrica multipliko formas grupon U(n), nomatan kial la unita grupo.

Vidu ankaŭ[redakti | redakti fonton]

Eksteraj ligiloj[redakti | redakti fonton]