Figuro de Coxeter-Dynkin
En geometrio, figuro de Coxeter-Dynkin estas grafeo prezentanta rilatan aron de speguloj (aŭ reflektaj hiperebenoj) en spaco por kalejdoskopa konstruado de hiperpluredro aŭ kahelaro.
Kiel la grafeo mem, la figuro prezentas grupojn de Coxeter, ĉiu grafea vertico prezentas spegulon (domajnan faceton) kaj ĉiu grafeo latero prezentas la ordon de duedran angulon inter du speguloj (sur domajna kresto).
Aldone iuj el la grafeaj verticoj havas ringojn kiuj markaj aktivajn spegulojn priskribantajn la specifan unuforman hiperpluredron.
La figuro estas pruntita de la figuro de Dynkin.
Priskribo
[redakti | redakti fonton]Ĉiu figuro bezonas almenaŭ unu aktivan verticon por prezenti hiperpluredron aŭ kahelaron.
La ringoj esprimas informo pri tio ĉu la generanta punkto estas sur aŭ for de la spegulo. Aparte spegulo estas aktiva (kreas reflektojn) nur se punktoj estas for de la spegulo. Aldono de la ringo signifas ke la punkto estas for de la spegulo kaj kreas reflektojn.
Lateroj estas markita kun entjeroj n (aŭ iam pli ĝenerale racionalaj nombroj p/q) prezentante duedra angulo de 180/n. Se latero estas nemarkita ĝi havas la defaŭltan valoron n=3. Se n=2 la angulo estas 90 gradoj kaj la speguloj ne interagas, kaj la latero povas esti nefarita. Du paralelaj speguloj povas esti markitaj per "∞".
Principe, n speguloj povas esti prezentitaj per plena grafeo en kiu ĉiu el n*(n-1)/2 lateroj estas desegnita. En praktiko interesaj konfiguroj de speguloj inkluzivas iun kvanton da ortoj, kaj la respektivaj lateroj povas esti nefaritaj.
Hiperpluredroj kaj kahelaroj povas esti generitaj uzanta ĉi tiujn spegulojn kaj la solan generilan punkton. Spegulaj bildoj kreas la novaj punktojn kiel reflektoj. Lateroj povas kreiĝi inter punktoj kaj spegula bildo. Edroj povas esti konstruitaj per cikloj de kritaj lateroj, kaj tiel plu
Ekzemploj
[redakti | redakti fonton]- Sola vertico de la grafeo priskribas la solan spegulon. Ĉi-tio estas grupo A1. Se la vertico estas ringigita, kreiĝas dulatero aŭ latero perpendikulara (orta) al la spegulo, priskribata kiel {} aŭ {2}.
- Du nekunigitaj verticoj de la grafeo priskribas du perpendikularajn spegulojn. Se ambaŭ verticoj estas ringigitaj, ortangulo kreiĝas, aŭ kvadrato, se la punkto estas je egala distanco de ambaŭ speguloj.
- Du verticoj de la grafeo kunigitaj per latero de ordo n kreas n-plurlateron, se la punkto estas sur unu spegulo, kaj 2n-plurlateron, se la punkto estas for de ambaŭ speguloj. Ĉi-tio estas grupo Dn
2. - Du paralelaj speguloj priskribas malfinian plurlateron de grupo D∞
2, ankaŭ nomatan W2. - Tri speguloj situantaj kiel triangulo formas bildojn vidatajn en tradicia kalejdoskopo kaj estas prezentitaj per 3 verticoj de la grafeo, koneksaj kiel triangulo. Ekzemploj, kiuj generas ripetantan bildon havas laterojn markitajn kiel (3 3 3), (2 4 4), (2 3 6), kvankam la lastaj du povas esti desegnitaj kiel linia grafeo kun la 2-rando ignorita. Ĉi-tiuj estas unuformaj kahelaroj per regulaj plurlateroj.
- Tri speguloj generas unuforman pluredron, inkluzivantaj racionalajn nombrojn, kiuj estas en la aro de la trianguloj de Schwarz.
- Tri speguloj kun unu perpendikulara (orta) al la aliaj du generas la unuformajn prismojn.
Ĝenerale ĉiu regula n-hiperpluredroj, prezentata per simbolo de Schläfli {p,q,r,…} povas havi fundamentan domajnon prezentitan per aro de n speguloj kaj respektivan figuron de Coxeter-Dynkin de linia formo kun lateroj markitaj per p,q,r…
Finiaj grupoj de Coxeter
[redakti | redakti fonton]Familioj de konveksaj unuformaj hiperpluredroj estas difinitaj per grupoj de Coxeter.
Grupo de Coxeter | Hiperpluredro | Alternativaj nomoj kiel de simpla grupo de Lie |
---|---|---|
An | La simplaĵa hiperpluredra familio | An |
Bn | La familio de duonverticaj hiperkuboj, komence je n=4 per la 16-ĉelo | Dn |
Cn | La hiperkuba hiperpluredra familio | Cn |
Dn 2 |
La regulaj plurlateroj | In 1 |
E6, E7, E8 | La duonregulaj hiperpluredroj de Gosset | E6, E7, E8 |
F4 | La 24-ĉela plurĉela familio | Sama F4 |
G3 | La dekduedra/dudekedra pluredra familio | H3 |
G4 | La 120-ĉela/600-ĉela plurĉela familio | Ankaŭ nomis H4 |
Notoj:
- Tri malsamaj simboloj estas donita por la samaj grupoj - litero/nombro, krampita aro de nombroj, la figuro de Coxeter.
- La forkiĝintaj grupoj Bn estas ankaŭ donitaj en notacio h[] prezentanta la fakton, ke ili estas duonaj aŭ alternaj versioj de la regulaj Cn grupoj.
- La forkiĝintaj grupoj Bn kaj En estas ankaŭ donitaj en formo kun supra indico [3a,b,c] kie a,b,c estas la nombroj de segmentoj en ĉiu de la 3 branĉoj.
Nefiniaj grupoj de Coxeter
[redakti | redakti fonton]Familioj de konveksaj unuformaj kahelaroj de n-1 dimensia spaco estas difinitaj per grupoj de Coxeter:
Grupo de Coxeter | Kahelaro / priskribo | Alternativaj nomoj kiel de simpla grupo de Lie |
---|---|---|
Pn | Cikla grupo | ~An-1 |
Qn | ~Dn-1 | |
Rn | La hiperkuba {4,3,....} regula kahelara familio. | ~Bn-1 |
Sn | La alternita hiperkuba kahelara familio. | ~Cn-1 |
T7, T8, T9, T10 | La kahelaroj de Gosset. T10 ekzistas en hiperbola spaco. | ~E6, ~E7, ~E8, ~E9 |
U5 | La 24-ĉela {3,4,3,3} regula kahelaro. | ~F4 |
V3 | La seslatera kahelaro. | ~H2 |
W2 | Du paralelaj speguloj | ~I1 |
Notoj:
- Regulaj (linearaj) grupoj estas donitaj en ekvivalenta krampa notacio.
- La grupoj Sn estas donitaj ankaŭ en notacio h[] kiel duona rilate al la regula grupo.
- La grupoj Qn estas donitaj ankaŭ en notacio q[] kiel kvarona rilate al la regula grupo.
- La forkiĝintaj grupoj Tn estas donitaj ankaŭ en formo kun supra indico [3a, b, c], kie a, b, c estas la kvantoj de segmentoj en la 3 branĉoj.
Vidu ankaŭ
[redakti | redakti fonton]- Konstruo de Wythoff
- Simbolo de Wythoff
- Simbolo de Schläfli
- Grupo de Coxeter
- Triangulo de Schwarz
- Radika sistemo
- Unuforma hiperpluredro
Referencoj
[redakti | redakti fonton]- Kalejdoskopoj: Elektitaj skriboj de H.S.M. Coxeter, redaktita de F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
- (Papero 17) H.S.M. Coxeter, La Evoluado de Figuroj de Coxeter-Dynkin, Nieuw Archief voor Wiskunde 9 (1991) 233-248]
- H. S. M. Coxeter, The Beauty of Geometry: Twelve Essays - La Belo de Geometrio: Dek du eseoj (1999), Dover Publications, ISBN 978-0-486-40919-1 (Ĉapitro 3: Konstruado de Wythoff's por uniformaj hiperpluredroj)
- H. S. M. Coxeter, Regular Polytopes - Regulaj hiperpluredroj, 3-a. red., Dover Publications, 1973. ISBN 0-486-61480-8. (Ĉapitro 5: La kalejdoskopo, kaj sekcio 11.3: prezento per grafeoj)
Eksteraj ligiloj
[redakti | redakti fonton]- Eric W. Weisstein, Figuro de Coxeter-Dynkin en MathWorld.
- Regulaj hiperpluredroj, radikaj kradoj kaj kvazaŭkristaloj, R. Arkivigite je 2007-06-10 per la retarkivo Wayback Machine