Glosaro de grafeteorio

El Vikipedio, la libera enciklopedio
Saltu al: navigado, serĉo
La artikolo estas parto de serio pri grafeteorio.




Plej gravaj terminoj
grafeo
arbo
subgrafeo
ciklo
kliko
grado de vertico
grado de grafeo


Elektitaj klasoj de grafejo
plena grafeo
plena dukolora grafeo
kohera grafeo
arbo
grafeo dudivdebla
Fenda grafeo
regula grafeo
grafeo de Euler
grafeo de Hamilton
grafeo senrelifa


Grafeaj algoritmoj
A*
Bellman-Ford
Dijkstry
Fleury
Floyd-Warshall
Johnson
Kruskal
Prim
traserĉado de grafeo
en larĝeco
en profundo
plej proksima najbaro


Problemoj prezentataj kiel grafeaj
problemo de vojaĝisto
problemo de ĉina leteristo
problemo de marŝrutigado
problemo de kunigado de geedzoj


Alijaj
kodo de Gray
diagramo de Hasse
kodo de Prüfer


Reprezentado de grafeo Glosaro de grafeteorio


vidi  diskuti  redakti

Grafeteorio estas kreska areo en matematika esplorado, kaj havas grandan fakan vortoprovizon. Kelkaj aŭtoroj uzas la saman vorton kun malsamaj signifoj. Aliaj aŭtoroj uzas malsamajn vortojn celante la saman aferon. Ĉi tiu paĝo provizas la superrigardon pri nuntempa terminaro de grafeteorio kaj provas teni sin laŭeble ĝisdatigita kun la aktuala lingvouzo.

Fundamentaĵoj[redakti | redakti fonton]

Grafeo G konsistas el du tipoj de eroj, nome verticoj kaj randoj. Ĉiu rando havas du finpunktojn en la aro de verticoj, kaj oni povas diri, ke randoj interkonektaskunligas tiujn du finpunktojn. La aro de randoj tial povas esti difinita kiel sub-aro de la familio de ĉiuj du-eraj aroj de verticoj. Ofte, tamen, la aro de verticoj estas konsiderata kiel aro, kaj estas incida rilato kiu atribuas ĉiun randon al la paro de verticoj kiuj estas ĝiaj finpunktoj.

Randoj povas esti dotitaj kun direkto, kondukante al la nocio de orientita grafeo aŭ duliteraĵo, vidu sekcion #Direkto.

Alternativaj modeloj de grafeo ekzistas; ekz., grafeo povas esti konsiderata kiel Bulea duuma funkcio super la aro de verticoj aŭ kiel kvadrata (0,1)-matrico.

Vertico (baza ero) estas simple desegnita kiel punkto. La vertica aro de G estas kutime signita de V(G), aŭ V kiam estas neniu danĝero de konfuzo. La ordo de grafeo estas la nombro de ĝiaj verticoj, kio estas |V(G)|.

Latero (aro de du eroj) estas desegnita kiel linio konektanta du verticojn, nomitajn finverticoj, aŭ finpunktoj. Rando kun finverticoj x kaj y estas signata per xy (sen ia ajn simbolo en intere, do, ne skribu xy). La rando-aro de G estas kutime signata per E(G), aŭ E kiam estas neniu danĝero de konfuzo.

La grandeco de grafeo estas la kvanto de ties lateroj, kio estas |E(G)|.

Ciklo estas latero kies finverticoj estas la sama vertico. Ligo havas du klarajn finverticojn. Latero estas multobla se estas alia latero kun la samaj finverticoj; alie ĝi estas simpla. La obleco de latero estas la nombro de multaj randoj kunhavantaj la samajn finverticojn; la obleco de grafeo estas la maksimuma obleco de ĝiaj lateroj. Grafeo estas simpla grafeo se ĝi havas neniun multoblan lateron nek multoblan ciklon, plurgrafeo se ĝi havas multoblajn laterojn, sed ne ciklojn, kaj plurgrafeopseŭdografeo se ĝi enhavas kaj multoblajn laterojn kaj ciklojn (la literaturo estas alte nekonsekvenca). Kiam dirite sen ia kondiĉo, grafeo estas preskaŭ ĉiam alprenita esti simpla — aŭ oni devas juĝi laŭ la ĉirkaŭteksto.

Markado de grafeo kutime signifas la asignon de unikaj markoj (kutime naturaj nombroj) al la randoj kaj verticoj de grafeo. Grafeoj kun markitaj (etikeditaj) lateroj aŭ verticoj estas nomataj kiel markitaj (etikeditaj), tiuj sen ĉi tio estas nemarkitaj. Pli aparte, grafeoj kun markitaj verticoj nur estas vertico-markitaj, tiuj kun markitaj lateroj nur estas latero-markitaj. (Ĉi tiu uzado estas por distingi inter grafeoj kun identigeblaj verticoj aŭ lateraj aroj unuflanke, kaj izomorfiaj tipoj aŭ klasoj de grafeoj aliflanke.)

6n-graf.svg

La ekzemplo grafeo bildita dekstre estas simpla grafeo kun vertica aro V = {1, 2, 3, 4, 5, 6} kaj randa aro E = (kun la mapo w estante la idento).

Hiperlatero estas rando kiu estas permesita alpreni iun ajn nombron de verticoj, eble pli ol 2. Grafeo, kiu permesas iun ajn hiperlateron estas nomita hipergrafeo. Simpla grafeo povas esti konsiderata speciala kazo de la hipergrafeo, nome la 2-uniformo hipergrafeo. Tamen, kiam komencita sen ia kondiĉo, latero estas ĉiam alprenita konsisti el maksimume 2 verticoj, kaj grafeo estas neniam konfuzita kun hipergrafeo.

Kontraŭ-latero estas latero, kiu "estas ne tie". Pli formale, por du verticoj u kaj v, {u, v} estas kontraŭ-latero en grafeo G se (u, v) ne estas latero en G. Ĉi tio signifas, ke ne estas latero inter la du verticoj aŭ estas nur latero (v, u) de v al u se G estas direktita.

Kontraŭ-triangulo estas aro de tri verticoj neniu el kiuj estas koneksa.

La komplemento \bar{G} de grafeo G estas grafeo kun la sama vertica aro kiel G sed kun randa aro tia, ke xy estas rando en \bar{G} se kaj nur se xy estas ne rando en G.

Senlatera (latero-manka) grafeomalplena grafeo estas grafeo eble kun iuj verticoj, sed sen lateroj. Aŭ, ĝi estas grafeo sen verticoj kaj sen lateroj.

La nula grafeo estas la grafeo sen verticoj kaj sen lateroj. Aŭ, ĝi estas grafeo sen lateroj kaj ia nombro n de verticoj, en kiu kazo ĝi povas nomiĝi la nula grafeo sur n verticoj. (Estas nenia ajn konsekvenceco en la literaturo.)

Grafeo estas malfinia se ĝi havas malfinie multajn verticojn aŭ randojn aŭ ambaŭ; alie la grafeo estas finia. Malfinia grafeo kie ĉiu vertico havas finian gradon estas nomita loke finia. Kiam komencita sen ia kondiĉo, grafeo estas kutime alprenita esti finia.

Du grafeoj G kaj H estas dirita esti izomorfiaj, signita per G ~ H, se estas (bijekcia, dissurĵeta) (unu-al-unu) rilato, nomita izomorfio, inter la verticoj de la grafeo tia, ke du verticoj estas najbaraj en G se kaj nur se iliaj respektivaj verticoj estas najbaraj en H. Simile, grafeo G estas dirita esti homomorfia al grafeo H se estas surĵeto (mapado), nomita homomorfio, de V(G) al V(H) tia, ke se du verticoj estas interapudaj en G tiam iliaj respektivaj verticoj estas interapudaj en H.

Subgrafeoj[redakti | redakti fonton]

Subgrafeo de grafeo G estas grafeo kies vertica kaj randa aroj estas subaroj de tiuj de G. En la mala direkto, supergrafeo de grafeo G estas grafeo, kiu enhavas G kiel subgrafeo. Ni diras, ke grafeo G enhavas alian grafeon H se iu subgrafeo de G estas H aŭ estas izomorfia al H (depende de la bezonoj de la situacio).

Subgrafeo H estas ampleksanta subgrafeo, aŭ faktoro, de grafeo G se ĝi havas la saman vertican aron kiel G. Ni diras ke H ampleksas G.

Subgrafeo H de grafeo G estas dirita esti generita se, por iu ajn paro da verticoj x kaj y de H, xy estas rando de H se kaj nur se xy estas rando de G. En alia vortoj, H estas generita subgrafeo de G se ĝi havas la plej randoj kiuj aperas en G super la sama vertica aro. Se H estas elektita bazita sur vertica subaro S de V(G), tiam H povas esti skribita kiel G[S] kaj estas dirita esti generita de S.

Grafeo kiu ne enhavas H kiel generita subgrafeo estas dirita esti H-libera.

Universala grafeo en klaso K de grafeoj estas simpla grafeo en kiu ĉiu ero en K povas esti enigita kiel subgrafeo.

Marŝoj[redakti | redakti fonton]

Marŝo estas alternada vico (sinsekvo) de verticoj kaj lateroj, komenciĝanta kaj finiĝanta ĉe vertico, en kiu ĉiu vertico estas incida al la du lateroj kiuj antaŭvenas kaj sekvas ĝin en la vico, kaj la verticoj kiuj antaŭvenas kaj sekvas randon estas la finverticoj de tiu rando. Marŝo estas fermita se ĝia unua kaj lasta verticoj estas la samaj, kaj malfermita se ili estas malsamaj.

La longeco l de marŝo estas la nombro de lateroj kiujn ĝi uzas. Por malfermita marŝo, l = n–1, kie n estas la nombro de verticoj vizitis. Por fermita marŝo, l = n (la komenca/fina vertico estas listita dufoje, sed estas ne grafita dufoje). En la ekzempla grafeo, (1, 2, 5, 1, 2, 3) estas malfermita marŝo kun longeco 5, kaj (4, 5, 2, 1, 5, 4) estas fermita marŝo de longeco 5.

Spuro estas marŝo en kiu ĉiuj randoj estas distingaj. Fermita spuro jam estas nomita vojaĝocirkvito, sed ĉi tiuj estas ne universalaj, kaj la lasta estas ofte rezervita por regula subgrafeo de grado du.

Tradicie, vojo signifas tion kio nun kutime nomatas malfermita marŝo. Nuntempe, kiam komencita sen ia kondiĉo, vojo estas kutime difinita esti simpla, signifante, ke ĉiu vertico estas incida al maksimume du lateroj. (La termino ĉeno jam ankaŭ uzatas por nomi marŝon en kiu ĉiuj verticoj (kaj randoj) estas distingaj.) En la ekzempla grafeo, (5, 2, 1) estas vojo de longeco 2. La fermita ekvivalento al ĉi tiu tipo de marŝo estas nomita ciklo. Kiel vojo, ĉi tiu termino tradicie signifas iun ajn fermitan marŝon, sed nun estas kutime komprenata esti simpla per difino. En la ekzempla grafeo, (1, 5, 2, 1) estas ciklo de longo 3. (Ciklo, malkiel vojo, estas ne permesita havi longecon 0.) Vojoj kaj cikloj de n verticoj estas ofte signataj per Pn kaj Cn, respektive. (Tamen, iuj aŭtoroj uzas la longon anstataŭ la nombron de verticoj.)

Ciklo kiu havas neparan longon estas nepara ciklo; alie ĝi estas para ciklo. Unu teoremo estas ke grafeo estas dupartida grafeo se kaj nur se ne ekzistas ia ajn nepara ciklo. (Vidu en kompleta dupartida grafeo.)

La maŝo (angle girth) de grafeo estas la longo de plej mallonga (simpla) ciklo en la grafeo; kaj la cirkonferenco, la longo de plej longa (simpla) ciklo. La maŝo kaj cirkonferenco de necikla grafeo estas difinitaj esti malfinio ∞.

Grafeo estas necikla se ĝi enhavas neniujn ciklojn; unucikla se ĝi enhavas ĝuste unu ciklon; kaj pancikla se ĝi enhavas ciklojn de ĉiu ebla longo (de 3 ĝis la ordo de la grafeo).

C1 estas ciklo, C2 estas paro de digonoj (multaj randoj), kaj C3 estas nomita triangulo.

Vojo aŭ ciklo estas hamiltona (aŭ ampleksanta) se ĝi uzas ĉiujn verticojn ĝuste unufoje. Grafeo kiu enhavas Hamiltonan vojon estas spurebla; kaj unu kiu enhavas Hamiltonan vojon por iu ajn donita paro de (distingaj) finverticoj estas hamiltona koneksa grafeo. Grafeo kiu enhavas Hamiltonan ciklon estas Hamiltona grafeo.

Spuro aŭ cirkvito (aŭ ciklo) estas eŭlera se ĝi uzas ĉiujn laterojn precize unufoje. Grafeo kiu enhavas eŭleran spuron estas trairebla. Grafeo kiu enhavas Eŭleran cirkviton estas eŭlera grafeo. (Vidu ankaŭ en sep pontoj en Königsberg.)

La ekzempla grafeo ne enhavas eŭleran spuron, sed ĝi ja enhavas Hamiltonan vojon.

Du vojoj estas ene disecaj (iuj nomas ĝin sendependa) se ili ne havas ian ajn verticon komune, escepte de la unuan kaj lastan.

θ-grafeo estas la unio de tri ene disecaj (simplaj) vojoj kiu havas la samajn du klarajn finverticojn. θ0 grafeo havas sep verticojn kiuj povas esti aranĝitaj kiel la verticoj de regula sesangulo plus aldona vertico en la centro. La ok lateroj estas la perimetro de la sesangulo plus unu diametro.

Arboj[redakti | redakti fonton]

arbo estas koneksa necikla simpla grafeo. Vertico de grado 1 estas nomita folio, aŭ penda vertico. Rando incida al folio estas folia rando, aŭ penda rando. (Iuj homoj difinas folian randon kiel folio kaj tiam difinas folian verticon super ĝi. Ĉi tiuj du aroj de difinoj estas ofte uzata interŝanĝeble.) Ne-folia vertico estas interna vertico. Fojfoje, unu vertico de la arbo estas diferencigita, kaj nomita la radiko. Radikigita arbo estas arbo kun radiko. Radikigitaj arboj estas ofte traktitaj kiel direktitaj neciklaj grafeoj kun la randoj sagantaj foren de la radiko.

Arboj estas kutime uzataj kiel datumstrukturoj en komputiko (vidu arba datumstrukturo).

Subarbo de la arbo A estas koneksa subgrafeo de A.

Arbaro estas vertico-disa unio de arboj; aŭ, ekvivalente, necikla simpla grafeo.

Subarbaro de la arbaro S estas subgrafeo de S.

Ampleksanta arbo estas ampleksanta subgrafeo kiu estas arbo. Ĉiu grafeo havas ampleksantan arbaron. Sed nur koneksa grafeo havas ampleksantan arbon.

Speciala speco de arbo nomita stelo estas K1,k (vidu sube ĉe kliko). Generita stelo kun 3 randoj estas ungegaro).

k-uma arbo estas radikigita arbo en kiu ĉiu interna vertico havas k infanojn. 1-uma arbo estas simple vojo. 2-uma arbo estas ankaŭ nomita duuma arbo.

Klikoj[redakti | redakti fonton]

La plena grafeo Kn de ordo n estas simpla grafeo kun n verticoj en kiu ĉiu vertico estas apuda al ĉiu alia. La ekzempla grafeo estas ne plena. La plena grafeo sur n verticoj estas ofte signita per Kn. Ĝi havas n(n-1)/2 randojn (korespondantajn al ĉiuj eblaj elektoj de paroj de verticoj).

Kliko en grafeo estas aro de duope apudaj verticoj. Ĉar iu ajn subgrafeo generita per kliko estas plena subgrafeo, la du terminoj kaj ilia notacioj estas kutime uzataj interŝanĝeble. k-kliko estas kliko de ordo k. En la ekzempla grafeo pli supre, verticoj 1, 2 kaj 5 formas 3-klikon, aŭ triangulon. Maksimuma kliko estas kliko kiu ne estas subaro de ia alia kliko.

La klika nombro Ω(G) de grafeo G estas la ordo de plej granda kliko en G.

Koneksega komponanto[redakti | redakti fonton]

Rilata sed pli malforta koncepto estas tiu de koneksega komponanto. Neformale, koneksega komponanto de grafeo estas subgrafeo kie ĉiuj verticoj en la subgrafeo estas alireblaj per ĉiuj aliaj verticoj en la subgrafeo. Alirebleco inter verticoj estas farita de la ekzisto de vojo inter la verticoj.

Orientita grafeo povas esti malkomponita en koneksegajn komponantojn per dufoja rulado de la serĉ-algoritmo Profundaĵo-unue (en:DFS): unue, super la grafeo mem kaj poste sur la transpono de la grafeo en malkreskanta ordo de la finado-tempoj de la unua DFS. Donite orientita grafeo G, la transpono GT estas la grafeo G kun ĉiu rando-direktoj renversitaj.

Nodoj[redakti | redakti fonton]

nodo en orientita grafeo estas kolekto de verticoj kaj randoj kun la propraĵo, ke ĉiu vertico en la nodo havas elirajn randojn, kaj ĉiuj eliraj randoj de verticoj en la nodo havas aliajn verticojn en la nodo kiel celojn. Tial estas neeble lasi la nodon sekvante la direktojn de la randoj.

Se ĝenerala rimedo grafeo estas celkonforma, tiam nodo estas sufiĉa kondiĉo por (ŝajna?) plenhalto.

(Ĉi tiuj estas tre specialigitaj konceptoj, kiuj estas nekonataj al plej grafeo-teoriistoj.)

Minoroj[redakti | redakti fonton]

Minoro G_2 = (V_2,E_2) de G_1 = (V_1,E_1) estas injekto de V_2 al V_1 tia, ke ĉiu rando en E_2 korespondas al vojo (diseca de ĉiuj aliaj tiaj vojoj) en G_1 tia, ke ĉiu vertico en V_1 estas en unu aŭ pli vojoj, aŭ estas parto de la injekto de V_1 al V_2. Tio alternative povas esti frazita per termoj de kuntiroj, kiuj estas operacioj kiuj kolapsas vojon kaj ĉiujn verticojn en ĝi en solan randon (vidu randa kuntiro).

Enigo[redakti | redakti fonton]

Enigo G_1 = (V_1,E_1) de G_2 = (V_2,E_2) estas injekto de V_2 al V_1 tia, ke ĉiu rando en E_2 korespondas al vojo (diseca de ĉiuj aliaj tiaj vojoj) en G_1.

Apudeco kaj grado[redakti | redakti fonton]

En grafeteorio, grado, aparte tiu de vertico, estas kutime mezuro de senpera apudeco.

Rando konektas du verticojn; tiuj du verticoj estas diritaj esti incidaj al tiu rando, aŭ, ekvivalente, tiu rando incidas al tiuj du verticoj. Ĉiuj al grado rilataj konceptoj koncernas apudecon aŭ incidecon.

La grado, aŭ valento, dG(v) de vertico v en grafeo G estas la nombro de randoj incida al v, kun cikloj nombrataj dufoje. Vertico de grado 0 estas izolita vertico. Vertico de grado 1 estas folio. En la ekzempla grafeo verticoj 1 kaj 3 havas gradon de 2, verticoj 2,4 kaj 5 havas gradon de 3 kaj vertico 6 havas gradon de 1. Se E estas finia, tiam la tuta sumo de vertico-gradoj estas egala al duoble la nombro de randoj.

Grada vico estas listo de gradoj de grafeo en ne-pligrandiĝanta ordo (ekz. d1d2 ≥ … ≥ dn). Vico de ne-pligrandiĝantaj entjeroj estas realigebla se ĝi estas grada vico de iu grafeo.

Du verticoj u kaj v estas konsiderataj apudaj se rando ekzistas inter ili. Ni signigas tion per uv. En la pli supra grafeo, verticoj 1 kaj 2 estas apudaj, sed verticoj 2 kaj 4 ne. La aro de najbaroj de v, tio estas, verticoj apudaj al v sed ne inkluzivantaj v mem, formas generitan subgrafeon nomitan (malfermita) najbarejo de v kaj signigitan per NG(v). Kiam v estas ankaŭ inkluzivita, ĝi estas nomita fermita najbaraĵo, signifis per NG[v]. Kiam dirita sen ia kondiĉo, najbarejo estas alprenita esti malfermita. La subindico G estas kutime eliziita kiam estas neniu danĝero de konfuzo la sama najbareja notacio uzeblas ankaŭ por nome arojn de apudaj verticoj anstataŭ la respektivaj generitaj subgrafejoj. En la ekzempla grafeo, vertico 1 havas du najbarojn: verticoj 2 kaj 5. Por simpla grafeo, la nombro de najbaroj, kiun havas vertico koincidas kun ĝia grado.

Dominanta aro de grafeo estas vertica subaro kies fermita najbarejo inkluzivas ĉiujn verticojn de la grafeo. Vertico v dominas alia verticon u se estas rando de v al u. Vertica subaro V dominas alian vertican subaron U se ĉiu vertico en U estas najbara al iu vertico en V. La minimuma amplekso de dominanta aro estas la dominada nombro γ(G).

En komputiloj, finia, direktita aŭ nedirektita grafeo (kun n verticoj, ni diru) estas ofte prezentita per ĝia apudeca matrico: n-per-n matrico kies ĉelo en vico i kaj kolumno j donas la nombron de randoj de la i-a ĝis la j-a vertico.

Spektra grafeteorio studas interrilatojn inter la propraĵoj de la grafeo kaj ĝia apudeco-matrico.

La maksimuma grado δ(G) de grafeo G estas la plej granda grado super ĉiuj verticoj; la minimuma grado δ(G), la plej malgranda.

Grafeo en kiu ĉiu vertico havas la saman gradon estas regula. Ĝi estas k-regula se ĉiu vertico havas gradon k. 0-regula grafeo estas sendependa aro. 1-regula grafeo estas kongruanta. 2-regula grafeo estas vertice diseca unio de cikloj. 3-regula grafeo nomatas kuba, aŭ trivalenta.

k-faktoro estas k-regula ampleksanta subgrafeo. 1-faktoro estas perfekta kongruanta. Subdisko de randoj de grafeo en k-faktoroj estas nomita k-faktorigo. k-faktorigebla grafeo estas grafeo, kiu akceptas k-faktorigon.

Grafeo estas biregula se ĝi havas neegalajn maksimuman kaj minimuman gradojn kaj ĉiu vertico havas unun el tiuj du gradoj.

Forte regula grafeo estas regula grafeo tia, ke iuj ajn apudaj verticoj havas la saman nombron de komunaj najbaroj kiel alia apudaj paroj kaj, ke iuj ajn neapudaj verticoj havas la sama nombro de komunaj najbaroj kiel alia neapudaj paroj.

Sendependeco[redakti | redakti fonton]

En grafeteorio, la vorto sendependa kutime kunportas la kunsencon de duop-larĝe disareciproke neapudaj. En ĉi tiu senco, sendependeco estas formo de senpera neapudeco. Izolita vertico estas vertico ne incida al iaj randoj. Sendependa aro, aŭ stabila aro, estas aro de izolitaj verticoj, t.e. neniu paro de verticoj interapudas. Ĉar la grafeo generita de ia ajn sendependa aro estas malplena grafeo, la du terminoj estas kutime uzataj interŝanĝeble. En la ekzemplo pli supre, verticoj 1, 3, kaj 6 formas sendependan aron; kaj 3, 5, kaj 6 formas alian.

La sendependeca nombro α(G) de grafeo G estas la grando de plej granda sendependa aro de G.

Grafeo povas esti malkomponita en sendependajn arojn en la senco, ke la tuta vertica aro de la grafeo povas esti dispartigita en duop-larĝe disecajn sendependajn subarojn. Tiaj sendependaj subaroj estas nomitaj partidaj aroj, aŭ simple partoj.

Grafeo, kiu povas esti malkomponita en du partidajn arojn sed ne malpli estas dupartidaj; tri aroj sed ne malpli, tripartidaj; k aroj sed ne malpli, k-partidaj; kaj nekonata nombro de aroj, multpartidaj. 1-parta grafeo estas la sama kiel sendependa aro, aŭ malplena grafeo. 2-parta grafeo estas la sama kiel dupartida grafeo. Grafeo, kiu povas esti malkomponita en k partidajn arojn estas ankaŭ dirita esti k-kolorigebla.

Kompleta multpartida grafeo estas grafeo en kiu verticoj estas najbaraj se kaj nur se ili apartenas al malsamaj partidaj aroj. kompleta dupartida grafeo ankaŭ nomiĝas dukliko.

k-partida grafeo estas duonregula grafeo se ĉiu el ĝiaj partidaj aroj havas uniforman gradon; ekvivalentpartida se ĉiu partida aro havas la saman grandon; kaj balancita k-partida se ĉiu partida aro diferencas en grando per maksimume 1 de iu ajn alia.

La kongruanta nombro α&primo;(G) de grafeo G estas la grando de plej granda kongruanta, aŭ duop-larĝaj verticaj disecaj randoj, de G.

Ampleksanta kongruado, ankaŭ nomita perfekta kongruado estas kongruantaĵo, kiu kovras ĉiujn verticojn de grafeo).

Konekteco[redakti | redakti fonton]

Konekteco etendas la koncepton de apudo kaj esence estas formo (kaj mezuro) de seria apudeco.

Se estas eble konstati vojon de iu ajn vertico al iu ajn alia vertico de grafeo, la grafeo nomiĝas koneksa; alie, la grafeo estas malkonektita. Grafeo estas tute malkonektita se estas neniu vojo konektanta ian paron de verticoj. Ĉi tiu estas nur alia nomo por priskribi malplenan grafeon aŭ sendependan aron.

Tranĉa vertico, aŭ artika punkto), estas vertico kies forigo malkonektas grafeon. Tranĉi aro, aŭ vertica tranĉoapartiĝanta aro, estas aro de verticoj kies forigo malkonektas la restan grafeon. Ponto estas analoga rando (vidu pli sube).

Se estas ĉiam eble konstati vojon de iu ajn vertico al ĉiu alia eĉ post forpreno de iuj ajn k - 1 verticoj, tiam la grafeo estas dirita esti k-koneksa. Notu, ke grafeo estas k-koneksa se kaj nur se ĝi enhavas k ene disecajn vojojn inter iuj ajn du verticoj. La ekzempla grafeo pli supre estas koneksa (kaj pro tio 1-koneksa), sed ne 2-koneksa. La konekteco κ(G) de grafeo G estas la minimuma nombro de verticoj bezonataj por malkonekti G. Per konvencio, Kn havas konektecon n - 1; kaj malkonektita grafeo havas konektecon 0.

Ponto, aŭ tranĉa randoistmo, estas rando kies forigo malkonektas grafeon. (Ekzemple, arbo estas farita tute el pontoj.) Malkonektanta aro estas aro de randoj kies forigo pligrandiĝas la nombron de komponantoj. Randa tranĉo estas la aro de ĉiuj randoj havantaj unu finvertico en iu pozitiva vertica subaro S kaj alia finvertico en V(G)\S. Randoj de K3 formas malkonektantan aron, sed ne randan tranĉon. Iuj ajn du randoj de K3 formas minimuman malkonektantan aron kaj ankaŭ randan tranĉon. Randa tranĉo laŭnecese estas malkonektanta aro; kaj minimuma malkonektanta aro de nemalplena grafeo laŭnecese estas randa tranĉo. Ligo estas malgranda (sed ne necese minimuma), nemalplena aro de randoj kies forigo malkonektas grafeon. Tranĉa vertico estas analoga vertico (vidu pli supre).

Grafeo estas k-rando-koneksa se iu ajn subgrafeo formita per forpreno de iuj ajn k - 1 randoj estas ankoraŭ koneksa. La randa konekteco κ&primo;(G) de grafeo G estas la minimuma nombro de randoj bezonataj por malkonekti G. Unu konata rezulto estas ke κ(G) ≤ κ&primo;(G) ≤ δ(G).

Komponanto estas maksimume koneksa subgrafeo; bloko, ĉu maksimume 2-koneksa subgrafeo aŭ ponto kun ĝiaj finverticoj; kaj dukoneksa komponanto estas maksimuma aro de randoj en kiu iuj ajn du membroj kuŝas sur komuna simpla ciklo.

Apartiga vertico de grafeo estas vertico kis forigo el la grafeo pliigas ties nombron de konektitaj komponantoj. Dukoneksa komponanto difineblas kiel subgrafeo generita de maksimuma aro de nodoj kiu havas neniun apartigan verticon.

Distanco[redakti | redakti fonton]

La distanco dG(u, v) inter du (ne necese distingaj) verticoj u kaj v en grafeo G estas la longeco de la plej mallonga vojo inter ili. La suba indico G estas kutime eliziita kiam estas neniu danĝero de konfuzo. Kiam u kaj v estas identaj, ilia distanco estas 0. Kiam u kaj v estas neatingeblaj unu de la alian, ilia distanco estas difinita esti malfinio ∞.

La (discentreco, fokusdiseco) εG(v) de vertico v en grafeo G estas la maksimuma distanco de v al iu ajn alia vertico. La diametro diam(G) de grafeo G estas la maksimuma (discentreco, fokusdiseco) super ĉiuj verticoj en grafeo; kaj la radiuso rad(G), la minimuma. Kiam estas du komponantoj en G, tiam diam(G) kaj rad(G) estas difinitaj esti malfinio ∞. Bagatele, diam(G) ≤ 2 rad(G). Verticoj kun maksimuma (discentreco, fokusdiseco) estas nomitaj periferiaj verticoj. Verticoj de minimuma (discentreco, fokusdiseco) formas la centron. Arbo havas maksimume du centrajn verticojn.

La indekso de vertico de Wiener v en grafeo G, signigita per WG(v) estas la sumo de distancoj inter v kaj ĉiuj aliaj. La Wiener-a indekso de grafeo G, signigita per W(G), estas la sumo de distancoj super ĉiuj paroj de verticoj. Nedirektita grafea Wiener-a polinomo estas difinita esti Σ qd(u,v) super ĉiuj neordigitaj paroj de verticoj u kaj v. Wiener-a indekso kaj Wiener-a polinomo estas de aparta intereso al matematikaj kemiistoj.

La k-a potenco Gk de grafeo G estas supergrafeo formita per aldono de rando inter ĉiuj paroj de verticoj de G kun distanco maksimume k. Dua potenco de grafeo estas ankaŭ nomita kvadrato.

La k-ampleksanto estas ampleksanta subgrafeo en kiu ĉiuj du verticoj estas maksimume k-oble foraj unu de la alia sur S ol sur G. La nombro k estas la dilatio (angle dilation). k-ampleksanto estas uzata por studi geometrian retan optimumigon.

Genro[redakti | redakti fonton]

Kruciĝo estas paro de intertransaj randoj. Grafeo estas enigebla sur surfaco se siaj verticoj kaj randoj povas esti aranĝitaj sur ĝi sen ia kruciĝo. La genro de grafeo estas la (plej malalta, plej suba) genro de iu ajn surfaco sur kiu la grafeo povas eniĝi.

Ebeneca grafeo estas tiu kiu povas esti desegnita sur la (Eŭklida) ebeno sen ia kruciĝo; kaj ebeno-grafeo, tiu kiu estas desegnita en tia maniero. En aliaj vortoj, ebeneca grafeo estas grafeo de genro 0. La ekzempla grafeo estas ebeneca; la plena grafeo sur n verticoj, por n> 4, estas ne ebeneca. Ankaŭ, arbo laŭnecese estas ebeneca grafeo.

Kiam grafeo estas desegnita sen ia kruciĝo, iu ajn ciklo kiu ĉirkaŭbaras regionon sen ke ia rando atingus el la ciklo ĝis tia regiono formas edron. Du edroj sur ebeno-grafeo estas najbaraj se ili komunhavas komunan randon. Duala, aŭ ebeneca duala kiam la ĉirkaŭteksto bezonas esti klarigita, G* de ebeno-grafeo G estas grafeo kies verticoj prezentas la edrojn, inkluzivanta iu ajn ekstera edro, de G kaj estas apudaj en G* se kaj nur se iliaj respektivaj edroj estas apudaj en G. La dualo de ebeneca grafeo ĉiam estas ebeneca pseŭdografeo (ekz. konsideru la dualon de triangulo). En la familiara kazo de 3-koneksa simpla ebeneca grafeo G (izomorfia al konveksa pluredro P), la duala G* estas ankaŭ 3-koneksa simpla ebeneca grafeo (kaj izomorfia al la duala pluredro P*).

Aldone, ĉar ni povas konstatigi sencon de "eno" kaj "ekstero" sur ebeno, ni povas identigi "plej eksteran" regionon, kiu enhavas la tutan grafeo se la grafeo ne kovras la tutan ebenon. Tia plej ekstera regiono estas nomita ekstera edro . eksterebeniva grafeo) estas unu kiu povas esti desegnita en la ebeneca maniero tia, ke ĝiaj verticoj estas ĉiuj apudaj al la ekstera edro; kaj eksterebena grafeo, unu kiu ja estas desegnita en tia maniero.

La minimuma nombro de kruciĝoj kiu devas aperi kiam grafeo estas desegnita sur ebeno estas nomita la kruciĝa nombro.

La minimuma nombro de ebenecaj grafeoj bezonataj por kovri grafeon estas la dikeco de la grafeo.

Pezitaj grafeoj kaj retoj[redakti | redakti fonton]

Pezigita grafeo asociigas etikedan markon (pezo) kun ĉiu rando en la grafeo. Pezoj estas kutime reelaj nombroj. Ili povas esti limigitaj al racionalaj nombroj aŭ entjeroj. Certaj algoritmoj postulas pliajn limigojn al pezoj; ekzemple, la Dijkstra-algoritmo funkcias ĝuste nur por pozitivaj pezoj. La pezo de vojo aŭ la pezo arba en pezita grafeo estas la sumo de la pezoj de la elektitaj randoj. Fojfoje ne-rando estas markita per speciala pezo prezentanta malfinion. Fojfoje la vorto kosto estas uzata anstataŭ pezo. Kiam dirita sen ia kondiĉo, grafeo estas ĉiam alprenita esti nepezita. En iuj skriboj pri grafeteorio la termino reto estas sinonimo por pezigita grafeo. Reto povas esti direktita aŭ nedirektita, ĝi povas enhavi specialajn verticojn (nodojn), kiel fontodreno. La klasika reto-problemoj inkluzivas:

Direkto[redakti | redakti fonton]

Arko, aŭ direktita rando, estas ordigita duopo de finverticoj. En tia ordigita duopo, la unua vertico estas nomita kapo, aŭ komenca vertico; kaj la dua, vosto, aŭ fina vertico. Ĝi povas esti kosiderata rando asociita kun direkto, nome atribuanta kapon kaj voston al la finverticoj. Nedirektita rando malobservas ian ajn sencon de direkto kaj traktas ambaŭ finverticojn interŝanĝeble. Ciklo en (orientita grafeo, duliteraĵo), tamen, konservas sencon de direkto kaj traktas kaj kapon kaj voston idente. Aro de arkoj estas multoblaj, aŭ paralelaj, se ili komunhavas la saman kapon kaj la saman voston. Paro de arkoj estas kontraŭ-paralelaj se la kapo/vosto de iu estas la vosto/kapo de la alia. Digrafeoduliteraĵo, aŭ orientita grafeo, estas analoga al nedirektita grafeo escepte de ke ĝi enhavas nur arkojn. Miksita grafeo povas enteni kaj orientitajn kaj neorientitajn grafeojn. Kiam dirita sen ia kondiĉo, grafeo estas preskaŭ ĉiam alprenita esti nedirektita. Ankaŭ, (orientita grafeo, duliteraĵo) estas kutime alprenita enhavi ne nedirektitajn randojn.

(Orientita grafeo, Duliteraĵo) estas nomita simpla se ĝi havas neneiajn ciklojn kaj maksimume unu arkon inter iu ajn paro de verticoj. Kiam dirita sen ia kondiĉo, (orientita grafeo, duliteraĵo) estas kutime alprenita esti simpla.

En (orientita grafeo, duliteraĵo) γ, ni (distingi, diferencigi) la eliran gradon dγ+(v), la nombron de randoj lasantaj verticon v, disde la eniran gradon dγ-(v), la nombron de randoj enirantaj verticon v. Se la grafeo estas orientita, la grado dγ(v) de vertico v estas egala al la sumo de ĝiaj eliraj kaj eniraj gradoj. Kiam la ĉirkaŭteksto estas klara, la suba indico γ povas esti eliziita. Maksimumaj kaj minimumaj eliraj gradoj, estas signitaj per δ+(γ) kaj δ+(γ); kaj maksimumaj kaj minimumaj eniraj gradoj, per δ-(γ) kaj δ-(γ).

Elira najbarejo, aŭ posteula aro, N+γ(v) de vertico v estas la aro de vostoj de arkoj irantaj de v. Simile, enira najbarejo, aŭ antaŭula aro, N-γ(v) de vertico v estas la aro de kapoj de arko iranta al en v.

Fonto estas vertico kun enira duongrado 0; kaj profundiĝi, elira duongrado 0.

Vertico v dominas alian verticon u se estas arko de v al u. Vertica subaro S estas elire dominanta se ĉiu vertico ne en S estas dominita de iu vertico en S; kaj enire dominanta se ĉiu vertico en S estas dominita de iu vertico ne en S.

Kerno estas sendependa elire dominanta aro. (Orientita grafeo, Duliteraĵo) estas kerno-perfekta se ĉiu generita subdigrafeo (sub-(orientita grafeo, duliteraĵo)) havas kernon.

Eŭlera digrafeo (orientita grafeo, duliteraĵo) estas digrafeo (orientita grafeo, duliteraĵo) kun egalaj eniraj kaj eliraj gradoj je ĉiu vertico.

Orientigo estas asigno de direktoj al la randoj de neorientita aŭ parte orientita grafeo. Kiam dirita sen ia kondiĉo, estas kutime alprenite, ke ĉiuj nedirektitaj randoj estas anstataŭigitaj per direktita en ia orientiĝo. Ankaŭ, la subkuŝanta grafeo estas kutime alprenita esti nedirektita kaj simpla.

turniro estas digrafeo (orientita grafeo, duliteraĵo) en kiu ĉiu paro de verticoj estas koneksa per ĝuste unu arko. En aliaj vortoj, ĝi estas orientita plena grafeo.

Direktita vojo, aŭ simple vojo kiam la ĉirkaŭteksto estas klara, estas orientita simpla vojo tia, ke ĉiuj arkoj iras la saman direkton, kio signifas ke ĉiuj internaj verticoj havas enirajn kaj elirajn duongradojn 1. Vertico v estas atingebla de alia vertico u se estas direktita vojo, kiu komenciĝas ĉe u kaj finiĝas ĉe v. Notu, ke en ĝeneralo la kondiĉo, ke u estas atingebla de v ne enhavas, ke v estas ankaŭ atingebla de u.

Se v estas atingebla de u, tiam u estas antaŭulo de v kaj v estas posteulo de u. Se estas arko de u al v, tiam u estas rekta antaŭulo de v, kaj v estas rekta posteulo de u.

Digrafeo (Orientita grafeo, Duliteraĵo) estas forte koneksa se ĉiu vertico estas atingebla de ĉiu alia sekvante la direktojn de la arkoj. Kontraŭe, digrafeo estas malforte koneksa se ĝia subkuŝanta nedirektita grafeo estas koneksa. Malforte koneksa grafeo povas esti konsiderata digrafeo (orientita grafeo, duliteraĵo) en kiu ĉiu vertico estas "atingebla" de ĉiu alia sed ne necese per sekvado de la direktoj de la arkoj. Forta orientiĝo estas orientiĝo kiu produktas forte koneksan digrafeon.

Direktita ciklo, aŭ simple ciklo kiam la ĉirkaŭteksto estas klara, estas orientita simpla ciklo tia, ke ĉiuj arkoj iras la saman direkton, kio signifas ke ĉiuj verticoj havas enirajn kaj elirajn gradojn 1. Digrafeo (Orientita grafeo, Duliteraĵo) estas necikla se ĝi ne enhavas ian direktitan ciklon. Finia, necikla digrafeo sen izolitaj verticoj laŭnecese enhavas almenaŭ unu fonton kaj almenaŭ unu drenon. Vidu ankaŭ jenon: direktita necikla grafeo (en:'dag) por pli da informo.

Arborescenco, aŭ elira arbo(branĉanta, forkiĝanta), estas orientita arbo en kiu ĉiuj verticoj estas atingeblaj de sola vertico. Simile, en-arbo estas orientita arbo en kiu sola vertico estas atingebla de ĉiu alia.

Diversaj[redakti | redakti fonton]

Grafea invarianto estas propraĵo de Grafeo G, kutime nombro aŭ polinomo, kiu dependas nur de la izomorfia klaso de G. Ekzemploj estas grafeo-ordo, grafeo-genro, kolora nombro, kaj kolora polinomo de la grafeo..

Por esti kunfandita[redakti | redakti fonton]

Notu, ke antaŭ ol la enkonduko de grandaj komputilaj retoj, grafeteorio estis granda kampo sen vasta intereso aŭ apliko. Ĉar reta analitiko jam iĝas vitala komerca intereso, ne-kleruloj estas priamasintaj la kampon kaj popularigantaj certajn terminojn.

grafeo, reto 
Abstraktado de interrilatoj inter objektoj. Grafeoj konsistas ekskluzive de verticoj kaj randoj. Ĉiuj karakterizaĵoj de sistemo estas aŭ eliminitaj aŭ subsumita en ĉi tiujn erojn.
figuro 
Videbla bildigo de la abstrakta koncepto de grafeo.
punkto, nodo, vertico 
Objektoj ("aĵoj") prezentitaj en grafeo. Ĉi tiuj estas preskaŭ ĉiam bildigitaj kiel rondaj punktoj.
rando, ligo, arko 
Interrilatoj prezentitaj en grafeo. Ĉi tiuj estas ĉiam bildigitaj kiel rekta aŭ kurbaj linioj. La termino "arko" povas esti iluzia.
neidentigita 
Verticoj aŭ randoj kiuj estas ne konsideritaj kiel individuoj. Nur la maniero laŭ kiu ili konektiĝas al la cetero de la grafeo karakterizas neidentigitajn verticojn kaj randojn.
koloro, kolorigita, identigita 
Nodoj aŭ randoj kiuj estas konsideritaj kiel individuoj. Kvankam ili povas reale esti bildigitaj en figuroj en malsamaj koloroj, laborantaj matematikistoj ĝenerale enkrajonas nombrojn aŭ literojn.
nedirektita 
Grafeo en kiu ĉiu rando simbolas neordigitan, transitivan interrilaton inter du verticoj. Tiaj randoj estas bildigitaj kiel simplaj linioj aŭ arkoj.
direktita, digrafeo (orientita grafeo, duliteraĵo) 
Grafeo en kiu ĉiu rando simbolas orditan, netransitivan interrilaton inter du verticoj. Tiaj randoj estas bildigitaj kun sagpinto je unu fino de linio aŭ arko.
nepezigita 
Grafeo en kiuj ĉiuj interrilatoj simbolitaj per randoj estas konsideritaj ekvivalentaj. Tiaj randoj estas bildigitaj kiel simplaj linioj aŭ arkoj.
pezigita rando 
Pezigitaj randoj simbolas interrilatojn inter verticoj kiuj estas konsiderataj havi ian valoron, ekzemple, distanco aŭ lam-tempo. Tiaj randoj estas kutime prinotita per nombro aŭ litero lokita apud la rando.
pezigita vertico 
Pezigitaj verticoj ankaŭ havas iun valoron malsaman al sia identigo.
apuda 
Du randoj estas apudaj se ili komune havas verticon; du verticoj estas apudaj se ili komune havas randon.
grado 
La nombro de randoj kiuj konektas verticon.
regula 
Grafeo en kiu ĉiu vertico havas la saman gradon.
kompleta 
Grafeo en kiu ĉiu nodo estas ligita al ĉiu alia nodo. Por kompleta digrafeo (orientita grafeo, duliteraĵo), tio signifas po unu ligo en ĉu direkto (el la du).
raŭto 
Vico de randoj kaj verticoj de unu vertico al alia. Iu ajn donita rando aŭ vertico povus esti uzata pli ol unufoje.
vojo 
Vojo kiu ne pasas ian ajn randon pli ol unufoje. Se la vojo ne pasas ian verticon pli ol unufoje, ĝi estas simpla vojo.
koneksa 
Se iu vojo ekzistas de ĉiu vertico al ĉiu alia, la grafeo estas koneksa. Notu, ke iuj grafeoj estas ne koneksaj. Figuro de nekonektita grafeo povas aspekti kiel du aŭ pli nerilatajn figurojn, sed ĉiuj verticoj kaj randoj montritaj estas konsideritaj kiel unu grafeo.
maŝo, ciklo 
Vojo kiu finiĝas ĉe la vertico ĉe kiu ĝi komenciĝas.
arbo 
Koneksa grafeo sen cikloj.
simpleca vertico 
Vertico v estas simpleca se ĉiuj ĝiaj najbaroj estas interkonektitaj. Iu ajn aro de konektitaj simpleca verticoj formas klikon.
Eŭlera vojo 
Vojo kiu pasas tra ĉiu rando (unufoje kaj nur unufoje). Se la komenca kaj fina verticoj estas la samaj, ĝi estas Eŭlera cikloEŭlera cirkvito. Se la komenca kaj fina verticoj estas malsamaj, ĝi estas Eŭlero spuro.
Hamiltona vojo 
Vojo kiu pasas tra ĉiu vertico unufoje kaj nur unufoje. Se la komenca kaj fina verticoj estas apudaj, ĝi estas Hamiltona ciklo.

Vidu ankaŭ[redakti | redakti fonton]

Bibliografio[redakti | redakti fonton]

Angle[redakti | redakti fonton]

  • Bollobás, Béla (1998). Modern Graph Theory ~Moderna Grafeo Teorio. (Novjorko, NY): Springer-Verlag. ISBN 0-387-98488-7. [Pakita kun plibonigitaj temoj sekvis per historia ĝenerala priskribo je la fino de ĉiu ĉapitro.]
  • Diestel, Reinhard (2005), "Graph Theory, Third Edition". Springer. ISBN 3-540-26182-6 ["Standard textbook, most basic material and some deeper results, exercises of various difficulty and notes at the end of each chapter; known for being quasi error-free."]
  • West, Duglaso B. (2001). Introduction to Graph Theory ~Enkonduko al Grafeo Teorio (2ed). Upper Saddle River: Prentice Hall;. ISBN 0-13-014400-2. [Tunoj de ilustraĵoj, referencoj, kaj ekzercas. La plej kompleta komencdira gvidilo al la subjekto.]
  • Eriko W. Weisstein. "Graph." ~Grafeo. De MathWorld--A Wolframo Web Resource. http://mathworld.wolfram.com/Graph.html
  • Zaslavsky, Tomaso. "Glossary of signed and gain graphs and allied areas. ~Glosaro de signitaj kaj gajnaj grafeoj kaj aliancanitaj areoj. Elektronika Ĵurnalo de Kombinatoriko, Dinamikaj Katastroj en Kombinatoriko, # DS 8. http://www.kombinatoriko.org/Katastroj/