Saltu al enhavo

Superabunda nombro

Nuna versio (nereviziita)
El Vikipedio, la libera enciklopedio
Klasifiko de entjeroj laŭ dividebleco
Formoj de faktorado:
Primo
Komponita nombro
Pova nombro
Kvadrato-libera entjero
Aĥila nombro
Nombroj kun limigitaj sumoj de divizoroj:
Perfekta nombro
Preskaŭ perfekta nombro
Kvazaŭperfekta nombro
Multiplika perfekta nombro
Hiperperfekta nombro
Unuargumenta perfekta nombro
Duonperfekta nombro
Primitiva duonperfekta nombro
Praktika nombro
Nombroj kun multaj divizoroj:
Abunda nombro
Alte abunda nombro
Superabunda nombro
Kolose abunda nombro
Altkomponita nombro
Supera altkomponita nombro
Aliaj:
Manka nombro
Bizara nombro
Amikaj nombroj
Kompleza nombro
Societema nombro
Nura nombro
Sublima nombro
Harmondivizora nombro
Malluksa nombro
Egalcifera nombro
Ekstravaganca nombro
Vidu ankaŭ:
Divizora funkcio
Divizoro
Prima faktoro
Faktorado

En matematiko, superabunda nombro (iam mallongigita kiel SA) estas natura nombro n tia ke por ĉiu m<n,

kie σ(n) estas la dividanta funkcio (la sumo de ĉiuj pozitivaj divizoroj de n).

La unuaj kelkaj superabundaj nombroj estas 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, ... . Superabundaj nombroj estas proksime rilatantaj al maksimume divideblaj nombroj. Ĉiuj superabundaj nombroj estas maksimume divideblaj nombroj, sed 7560 estas kontraŭekzemplo de la malo.

Superabundaj nombroj estis unua difinitaj de Leonidas Alaoglu kaj Paŭlo Erdős (1944).

Propraĵoj

[redakti | redakti fonton]

Leonidas Alaoglu kaj Paŭlo Erdős (1944) pruvis ke se n estas superabunda, do ekzistas a2, ..., ap tiaj ke

kaj

Fakte, ap estas egala al 1 escepte se n estas 4 aŭ 36.

Alaoglu kaj Erdős observis ke ĉiuj superabundaj nombroj estas alte abunda. Ankaŭ ĉiuj superabundaj nombroj estas nombroj de Harshad.

Referencoj

[redakti | redakti fonton]

Eksteraj ligiloj

[redakti | redakti fonton]