Elektro

El Vikipedio, la libera enciklopedio
Saltu al: navigado, serĉo
Disambig.svg Por samtitola artikolo vidu la paĝon Elektro (apartigilo).
Fulmo estas unu el la plej spektaklaj kaj danĝeraj efikoj de elektro.
Galvana pilo.

Elektro estas nomo por ĉiuj fizikaj fenomenoj, kiuj baziĝas sur elektraj ŝargoj kaj ties moviĝo (fulmo, elektra kurento, elektra tensio, elektra kampo, elektromagneta indukto kaj ankaŭ fakaj atmosfera elektro, biologia elektro ktp). Krome elektro ebligas la kreadon kaj ricevon de elektromagneta radiado kiel ĉe radioondoj. Elektra ŝargo estas eco de kelkaj partikloj, ekzemple protonoj kaj elektronoj. La forto inter tiuj partikloj estas unu el la kvar konataj fundamentaj fortoj de naturo. Ankaŭ energio en la potencialo de elektraj ŝargoj estas nomata elektro.

En elektro, ŝarĝoj produktas elektromagnetajn kampojn kiuj agadas sur aliaj ŝarĝoj. Elektro okazas pro kelkaj tipoj de fizikaj fenomenoj:

En elektrotekniko, elektro estas uzata por:

Elektraj fenomenoj estis studitaj ekde antikveco, kvankam la progreso en teoria kompreno pluestis malrapida ĝis la 17a kaj 18a jarcentoj. Eĉ tiam, la praktika aplikado de elektro estis malgranda, kaj nur finde de la 19a jarcento elektro-inĝenieroj kapablis uzi ĝin por industria kaj hejma uzadoj. La rapida etendo de elektra teknologio tiame transformis kaj industrion kaj socion ĝenerale. La eksterordinaraj kapabloj de elektro signifas ke ĝi povas esti uzata por preskaŭ senlima serio de aplikaĵoj kio inkludas transporton, klimatizadon, lumigadon, komunikadon, kaj komputikon. Elektra energio estas nune ŝlosilo de moderna industria societo.[1]

Historio[redakti | redakti fonton]

Taleso de Mileto.

Longe antaŭ ajna kompreno pri elektro, homoj jam konis ion pri batofrapo fare de elektraj fiŝoj. Antikvegiptaj tekstoj datitaj el 2750 a.K. referencis al tiuj fiŝoj kiel "Fulmoj de la Nilo", kaj priskribis ilin kiel "protektantoj" de ĉiuj aliaj fiŝoj. Elektraj fiŝoj estis denove referencataj jarmilojn poste fare de antikvaj grekoj, romianoj kaj arabaj naturalistoj kaj kuracistoj.[2] Kelkaj antikvaj verkistoj, kiaj Plinio la Maljuna kaj Skribonio Largo, atestis pri la endormiga efiko de elektraj ŝokoj okazigintaj de elektraj katfiŝoj kaj rajoj, kaj sciis ke tiuj frapoj povas veturi laŭlonge de konduktaj objektoj.[3] Pacientoj suferantaj el malsanoj kiaj podagrokapdoloro estis direktitaj al tuŝado de elektraj fiŝoj esperante ke la povega frapo kuracu ilin.[4] Eble la plej frua kaj plej proksima alproksimiĝo al la malkovro de la identeco de fulmo, kaj de elektro el ajna alia fonto, estas atributebla al araboj, kiuj antaŭ la 15a jarcento havis arablingvan vorton por fulmo (raad) aplikebla ankaŭ al la elektra rajo.[5]

En la antikveco greka, la filozofo Taleso eltrovis, ke sukceno polurata per tuko altiras malgrandaĵojn.[6][7]

En ĉirkaŭ 1600 William Gilbert ankaŭ eksperimentis pri sukceno, kaj nomis la fenomenon electricity, de la greka vorto ἤλεκτρον elektron, «sukceno».[8] En 1720 la fizikisto Pieter Van Musschenbroek inventis la lejdenan botelon, specon de kondensatoro. En 1770 la kuracisto Luigi Galvani observis, ke detranĉitaj gamboj de ranoj ektremas sub la influo de du malsamaj metaloj (kio konsistigis pilon); tio pruvis ke elektro estas la rimedo per kiu neŭronoj pasigas signalojn al la muskoloj.[9] En 1775/76 Alessandro Volta inventis ŝargodisigilon kaj baterion.[10] En ĉirkaŭ 1800 André Marie Ampère inventis la ampermetron, elektran telegrafon kaj elektran magneton kaj fondas la teorion de elektromagnetismo.[11] Pri la invento de elektra telegrafo oni disputas inter pluraj inventintoj.

En 1821 Georg Ohm malkovris la leĝon de Omo, ke la elektra kurento tra donita rezistilo estas proporcia al la tensio. Varmigiloj enkondukas elektran energion en varmon aplikante la ĵulan efikon. En 1832 Michael Faraday formulis la leĝojn de magneta indukdenso kaj komencis la ellaboron de la elektrodinamiko. Motoroj enkondukas elektran energion en mekanikan energion aplikante tiun teorion. Dum la jaroj 18601870 James Clerk Maxwell formulis la teorion de elektro kaj magnetismo surbaze de senmovaj kaj moviĝantaj elektraj ŝargoj. Tiu teorio estas ĝis nun valida. Surbaze de siaj teorioj Maxwell postulis la ekziston de elektromagnetaj ondoj kaj deklaris, ke lumo konsistas el tiaj ondoj.

En 1879 Edisono konstruis elektran ampolon, kiu male al petrola aŭ gasa lumo ne emis kaŭzi incendiojn. En 1884 Heinrich Rudolf Hertz eksperimente produktis elektromagnetajn ondojn kaj tiel konfirmis la teorion de Maxwell. En 1886 Nikola Tesla demonstris la avantaĝojn de alterna kurento. En 1904 John Ambrose Fleming inventis la vakuan tubon. En 1906 Lee De Forest inventis la tri-elektrodan tubon, kiu ebligis amplifi elektrajn signalojn, eĉ altfrekvencajn. En 1948 Walter H. Brattain, John Bardeen kaj William Shockley evoluigis la transistoron, kiu kompare al la vakua tubo estas rezista al skuoj kaj ne bezonas varmigon.

Statika elektro[redakti | redakti fonton]

Loupe.svg Pli detalaj informoj troveblas en la artikolo Statika elektro.

Statika elektro estas amasiĝo de elektraj ŝargoj en aŭ sur la surfaco de korpo. Ĉi tiuj elektraj ŝargoj restas tie ĝis ili aŭ fluas al la tero aŭ okazas malŝargo al alia korpo. La amasiĝo de ŝargoj povas okazi kiam du korpoj el malsamaj materialoj, el kiuj almanaŭ unu estas dielektriko, estas frotitaj unu sur la alia kaj poste apartigitaj. Tiam, depende de la materialo unu de la du korpoj povas forpreni negativajn ŝargojn (elektronojn) de la alia kaj ŝargiĝi negative, dum la alia restas pozitive ŝargita pro la manko de la forprenitaj elektronoj. La ŝargoj restas amasitaj nur se la korpo estas izolita de la tero kaj de aliaj korpoj.

Triboelektro[redakti | redakti fonton]

Loupe.svg Pli detalaj informoj troveblas en la artikolo Triboelektro.

La triboelektro aŭ frotelektro estas tipo de kontakta elektro, pro kiu certaj materialoj fariĝas elektre ŝargitaj post frotado kun alia malsama materialo. Ĝi estis priskribita jam en 550 a.K. de Taleso de Mileto, kiu spertis ĝin frotante sukcenon. La kaŭzo de tiu efiko estas la energie favora transiro de elektronoj de unu el la tuŝiĝantaj korpo al la alia pro la diferenco de la forpuŝa laboro. La elektronoj transiras, ĝis la pro tio kreiĝinta diferenco de potencialo egalas al gajno de energio.

Vidu ankaŭ[redakti | redakti fonton]

Notoj[redakti | redakti fonton]

  1. Jones, D.A. (1991), "Electrical engineering: the backbone of society", Proceedings of the IEE: Science, Measurement and Technology 138 (1): 1–10, doi:10.1049/ip-a-3.1991.0001 
  2. Moller, Peter; Kramer, Bernd (Decembro 1991), "Review: Electric Fish", BioScience (American Institute of Biological Sciences) 41 (11): 794–6 [794], doi:10.2307/1311732 
  3. Bullock, Theodore H. (2005), Electroreception, Springer, pp. 5–7, ISBN 0-387-23192-7 
  4. Morris, Simon C. (2003), Life's Solution: Inevitable Humans in a Lonely Universe, Cambridge University Press, pp. 182–185, ISBN 0-521-82704-3 
  5. The Encyclopedia Americana; a library of universal knowledge (1918), New York: Encyclopedia Americana Corp
  6. Stewart, Joseph (2001), Intermediate Electromagnetic Theory, World Scientific, p. 50, ISBN 981-02-4471-1
  7. Simpson, Brian (2003), Electrical Stimulation and the Relief of Pain, Elsevier Health Sciences, pp. 6–7, ISBN 0-444-51258-6
  8. Baigrie, Brian (2006), Electricity and Magnetism: A Historical Perspective, Greenwood Press, pp. 7–8, ISBN 0-313-33358-0
  9. Kirby, Richard S. (1990), Engineering in History, Courier Dover Publications, pp. 331–333, ISBN 0-486-26412-2
  10. Kirby, Richard S. (1990), pp. 331–333.
  11. Kirby, Richard S. (1990), samloke.