Rimana ζ funkcio: Malsamoj inter versioj

El Vikipedio, la libera enciklopedio
[nekontrolita versio][nekontrolita versio]
Enhavo forigita Enhavo aldonita
Linio 33: Linio 33:
==La funkcio Zeto kiel Malfinia Produto==
==La funkcio Zeto kiel Malfinia Produto==


[[Euler|Ojler]] montris ke <math>\zeta(z)=\prod_{\text{prima } p}(1-\frac{1}{p^z})^{-1}</math>. Ĉi tiu formulo veras por ĉiu <math>z</math> kies reela parto estas pli ol <math>1</math>.
[[Leonhard Euler|Ojler]] montris ke <math>\zeta(z)=\prod_{\text{prima } p}(1-\frac{1}{p^z})^{-1}=(1-\frac{1}{p^z})^{-1}(1-\frac{1}{3^z})^{-1}(1-\frac{1}{5^z})^{-1}\ldots(</math>. Ĉi tiu formulo veras por ĉiu <math>z</math> kies reela parto estas pli ol <math>1</math>.


Ojler deduktis tion sekvamaniere. Unue, rimarku ke
<math>\zeta(z)=\prod_{\text{prima } p}(1-\frac{1}{p^z})^{-1}</math>

<math>\zeta(z)=1+\frac{1}{2^z}+\frac{1}{3^z}\ldots</math>
<math>\implies\zeta(z)\frac{1}{2^z}=\frac{1}{2^z}+\frac{1}{4^z}+\frac{1}{6^z}\ldots</math>

Per subtraho, oni trovas

<math>\zeta(z)(1-\frac{2^z})=1+\frac{1}{3^z}+\frac{1}{5^z}\ldots</math>

En la dekstra flanko, estas nur la malparaj entjeroj. Pro tio,

<math>\zeta(z)(1-\frac{2^z})\frac{1}{3^z}=\frac{1}{3^z}+\frac{1}{9^z}+\frac{1}{15^z}+\ldots</math>

Alia subtraho vidigas ke

<math>\zeta(z)(1-\frac{2^z})(1-\frac{1}{3^z})=1+\frac{1}{5^z}+\frac{1}{7^z}+\ldots</math>

Ĉiu nombro dividebla per <math>3</math> estante subtrahita, en la supra esprimo estas nur la malparaj nombroj kiuj estas nedivideblaj per <math>3</math>. Simile,

<math>\zeta(z)(1-\frac{2^z})(1-\frac{1}{3^z})(1-\frac{1}{5^z})=1+\frac{1}{7^z}+\frac{1}{11^z}+\ldots</math>

kie, en la dekstra flanko, aperas la entjeraj nombroj kiujn oni ne povas dividi per <math>2,3</math> aŭ <math>5</math> (kaj nur tiuj).

Induktive, en la maldekstra flanko aperas la produto <math>\zeta(z)\prod_{\text{prima }p} (1-\frac{1}{p^z}), kaj la dekstra nombra konverĝas al <math>1</math>. Oni tuj la proponata egaleco.

Rimarko: la serio kiu definas <math>\zeta</math> konverĝas absolute se la reela parto de <math>z</math> estas pli ol <math>1</math>. Tio permesas monstri que la dekstra limito estas <math>1</math>.


{{ĝermo}}
{{ĝermo}}

Kiel registrite je 04:08, 28 jun. 2011

Pri la aliaj funkcioj estas skribataj per la litero ζ rigardu en funkcio ζ (apartigilo).

Matematikaj funkcioj
fonta aro, cela arobildo, malbildobildaro, argumentaro
Fundamentaj funkcioj
Algebraj funkcioj:
konstantalinearakvadratapolinomaracionalaTransformo de Möbius
Aliaj funkcioj:
trigonometriajinversa trigonometriahiperbolaeksponentalogaritmapotenca
Specialaj funkcioj
eraraβΓζηW de Lambertde Bessel
Nombroteoriaj funkcioj:
τσde Möbiusφπλ
Ecoj:
totaleco kaj partecopareco kaj malparecomonotonecobaritecoperiodecodisĵetecosurĵetecodissurĵeteco
kontinuecoderivaĵecointegralebleco

Funkcio: zeto de Riemann – unu el specialaj funkcioj, nomita post Bernhard Riemann kaj difinata per formulo:

Serio estas konverĝa por z-oj , kiuj reala parto estas pli granda ol 1. Por la aliaj z estas uzata la analitika vastigaĵo.

Kun funkcio estas kunigata unu el plej gravaj problemoj de hodiaŭa matematiko – hipotezo de Riemann.

Ecoj

Por nombroj kiuj havas realan parton malpli granda ol 1, valoro de funkcio ζ povas esti kalkulita el formulo:

kaj estas funkcio Γ de Euler.


Diagramo de ζ(x)

Kelkaj valoroj

La funkcio Zeto kiel Malfinia Produto

Ojler montris ke . Ĉi tiu formulo veras por ĉiu kies reela parto estas pli ol .

Ojler deduktis tion sekvamaniere. Unue, rimarku ke

Per subtraho, oni trovas

En la dekstra flanko, estas nur la malparaj entjeroj. Pro tio,

Alia subtraho vidigas ke

Ĉiu nombro dividebla per estante subtrahita, en la supra esprimo estas nur la malparaj nombroj kiuj estas nedivideblaj per . Simile,

kie, en la dekstra flanko, aperas la entjeraj nombroj kiujn oni ne povas dividi per (kaj nur tiuj).

Induktive, en la maldekstra flanko aperas la produto malsukcesis analizi formulon (Sintakseraro): {\displaystyle \zeta(z)\prod_{\text{prima }p} (1-\frac{1}{p^z}), kaj la dekstra nombra konverĝas al <math>1} . Oni tuj la proponata egaleco.

Rimarko: la serio kiu definas konverĝas absolute se la reela parto de estas pli ol . Tio permesas monstri que la dekstra limito estas .