Funkcio η

El Vikipedio, la libera enciklopedio
Disambig.svg Por samtitola artikolo vidu la paĝon Funkcio de Dirichlet.
Matematikaj funkcioj
Argumentaro, Celaro, Bildaro, Malbildo
Fundamentaj funkcioj
algebraj funkcioj:
konstantalinearakvadratapolinomaracionalaTransformo de Möbius
ceteraj funkcioj:
trigonometriajinversa trigonometriahiperbolaeksponentalogaritmapotenca
Specialaj funkcioj
eraraβΓζηW de Lambertde Bessel
Nombroteoriaj funkcioj:
τσde Möbiusφπλ
Ecoj:
pareco kaj malparecomonotonecobaritecoperiodecodisĵetecosurĵetecodissurĵeteco
kontinuecoderivaĵecointegralebleco

Funkcio η (aŭ funkcio η de Dirichletfunkcio difinita por kompleksaj argumentoj, kiel:

kaj - funkcio ζ de Riemann.

Ceteraj difinoj[redakti | redakti fonton]

  • Difino per senfina serio:
    .
  • Difino per integralo:
    kaj funkcio Γ

Ecoj[redakti | redakti fonton]

  • Reala parto de funkio η kaj reala parto de funkcio kun kompleksa konjugita argumento estas sama:
  • Imaginara parto de funkio kaj imaginara parto de funkio kun kompleksa konjugita argumento estas kontraŭa:
  • Limeso en senfino egalas 1:
  • Rekte videbla estas, ke (el supraj ecoj):
    .

Grafikaĵoj[redakti | redakti fonton]