Integreca ringo

El Vikipedio, la libera enciklopedio
(Alidirektita el Integrala domajno)
Saltu al: navigado, serĉo

Integreca ringointegreca domajno estas komuta Ringo kun multiplika neŭtra elemento kaj sen nuldivizoro, do .

Envicigo[redakti | redakti fonton]

komutaj ringojintegrecaj ringojintegrece fermitaj ringojfaktorecaj ringojĉefidealaj ringojeŭklidaj ringojkorpoj

Ekzemploj[redakti | redakti fonton]

Ekzemploj estas la entjeroj kaj la reelaj polinomoj. Ĉiu korpo estas integreca ringo. Aliaflanke ĉiu finia aro kun integrecringostrukturo estas korpo. Pruvo: Por ĉiu en integreca ringo ekzistigas disĵeta funkcio , kiu sendas ĉiun en la integrecringo al . Ĉiu disĵeta funkcio kun finia fontaro estas inversigebla. Do estas inversigebla. Tiel estas bildo de iu , kaj tiu elemento estas la inverso de .

La plej supra kondiĉo implicas ecojn, kiujn havas nur la integrecaj ringoj. Ekzemple, ĝi permesas aserti ke , ĉar . Do tiu koncepto montras, ke la eco, ke , estas unu el tiuj, kiuj ĝeneraligas la entjerojn, reelajn polinomojn kaj aliajn ringojn.

La kongruecaj klasoj de entjeroj module je estas integreca ringo se kaj nur se estas primo. Rimarku, ke, se estas primo, . Ĉiu kongrueca klaso module je estas korpo.