Metalurgio

El Vikipedio, la libera enciklopedio
Saltu al: navigado, serĉo
Georgius Agricola, aŭtoro de De re metallica, grava dekomenca verko pri metala elfosado.

Metalurgio estas fako de materiala scienco kaj inĝenierarto kiu studas la fizikajn kaj kemiajn ecojn de metalaj elementoj kaj miksaĵoj de metaloj, nomata alojoj. Metalurgio studas la mikroskopajn mekanismojn kiuj kaŭzas metalon kaj alojojn agi kiel ili agas: la ŝanĝoj kiuj okazas je atoma nivelo kiuj ŝanĝas la ecojn de la metalo. Ekzemploj de iloj uzataj por mikroskopa ekzameno de metaloj estas optikaj mikroskopoj kaj elektronaj mikroskopoj kaj masaj spektrometroj.

Metalurgio estas ankaŭ la teknologio de metaloj: nome la vojo laŭ kiu scienco estas aplikita al la produktado de metaloj, kaj al la inĝenierarto de la metalaj komponantoj por ties uzado en produktoj por konsumantoj kaj fabrikantoj. La produktado de metaloj inkludas la procezadon de ercoj por elpreni la metalon kiun ili enhavas, kaj la miksojn de metaloj, foje kun aliaj elementoj, por produkti alojojn. Metalurgio estas distingata el la metio metalfarado, kvankam metalfarado dependas el metalurgio, kiel medicino dependas el medicina scienco, por teknikaj avancoj.

Metalurgio estas subdividata en fera metalurgio (foje konata ankaŭ kiel nigra metalurgio) kaj nefera metalurgio aŭ kolora metalurgio. Fera metalurgio inkludas procezojn kaj alojojn bazitajn sur fero dum nefera metalurgio inkludas procezojn kaj alojojn bazitajn sur aliaj metaloj. La produktado de feraj metaloj kalkulatas por 95 procento de la tutmonda metalproduktado.[1]

Metallaboro en 1568, Germanio.

Etimologio[redakti | redakti fonton]

La vorto estis origine termino de alkemio por la elproduktado de metaloj el mineraloj, la finaĵo -urgio signifante procezon, speciale manfaranta: oni studis en tiu senco en 1797 en la Encyclopaedia Britannica.[2] Fine de la 19a jarcento ĝi estis etendita al la pli ĝenerala scienca studo de metaloj, alojoj, kaj rilataj procezoj.[2] La radikoj de metalurgio derivas el la Antikva Greka: μεταλλουργός, metallurgós, "laboristo en metalo", el μέταλλον, métallon, "metalo" + ἔργον, érgon, "laboro".

Historio[redakti | redakti fonton]

Ora kapostrio de Tebo, 750–700 a.K.
Loupe.svg Pli detalaj informoj troveblas en la artikoloj Ĥalkolitiko kaj Bronzepoko.

La plej frua registrita metalo uzita de homoj ŝajne estis oro kiu povis esti trovita libere el miksaĵo aŭ "natura." Malgrandaj kvantoj de natura oro estis trovitaj en hispanaj kavoj uzataj dum la fina periodo de la Paleolitiko, ĉ. 40,000 a.K.[3] Arĝento, kupro, stano kaj meteora fero povas ankaŭ esti trovita en natura formo, ebligante kvanton de metalfarado en fruaj kulturoj.[4] Egiptaj armiloj faritaj el meteora fero ĉirkaŭ 3000 a.K. estis tre aprezataj kiel "ponardoj el la ĉielo."[5]

Kelkaj metaloj, ĉefe stano, plumbo kaj (je pli alta temperaturo) kupro, povas esti elprenita el siaj ercoj simple varmigante la rokojn per fajro, procezo konata kiel fandado. La unua pruvo de tiu elprena metalurgio datas el la 5a kaj 6a jarmilo a.K. kaj estis trovitaj en la arkeologiaj kuŝejoj de Majdanpek, Jarmovak kaj Plocnik, ĉiuj tri en Serbio. Ĝis nun, la plej antikva pruvo de kuprofandado troviĝis en la kuŝejo Belovode,[6] inklude kupran hakilon el 5500 a.K. apartenanta al la Vinĉa kulturo.[7] Aliaj signoj de fruaj metaloj troviĝis el la tria jarmilo a.K. en lokoj kiaj Palmela (Portugalio), Los Millares (Hispanio), kaj Stonehenge (Unuiĝinta Reĝlando). Tamen, la lastaj komencoj ne povas klare esti certigitaj kaj novaj malkovroj estas kaj kontinuaj kaj progresantaj.

Min-areoj de la antikva Mezoriento. Koloroj: arseno estas en bruna, kupro en ruĝa, stano en griza, fero en ruĝecbruna, oro en flava, arĝento en blanka kaj plumbo en nigra. Flava areo estas por arsena bronzo, dum grizaj areoj estas por stana bronzo.

Tiuj unuaj metaloj estis unuopaj kiam oni trovis ilin. Ĉirkaŭ 3500 a.K., ĝi estis malkovrita ke per kombinado de kupro kaj stano, oni povis fari superan metalon, nome alojo nomita bronzo, reprezentante gravan teknologian ŝanĝon konata kiel Bronzepoko.

La elfosado de fero el ties erco kaj transformado en laborebla metalo estas multe pli malfacila ol por kupro aŭ stano. La procezo ŝajne estis inventita de Hititoj ĉirkaŭ 1200 a.K., komencante la Ferepokon. La sekreto elfosi kaj labori feron estis ŝlosila faktoro en la sukceso de Filiŝtoj.[5][8]

Historia disvolviĝoj en fera metalurgio povis troviĝi en ampleksa vario de pasintaj kulturoj kaj civilizoj. Tio inkludas la antikvajn kaj mezepokajn reĝlandojn kaj imperiojn de Mezoriento kaj Proksima Oriento, antikva Irano, antikva Egipto, antikva Nubio, kaj Anatolio (Turkio), Antikva Nok, Kartago, antikva Grekio kaj antikva Romo de antikva Eŭropo, mezepoka Eŭropo, antikva kaj mezepoka Ĉinio, antikva kaj mezepoka Hindio, antikva kaj mezepoka Japanio, inter aliaj. Multaj aplikoj, praktikoj, kaj inventoj asociaj aŭ inkluditaj en metalurgio setliĝis en antikva Ĉinio, kiaj la plinovigo de la altforno, gisfero, hidraŭlik-energiaj martelmaŝinoj, kaj duoblagaj piŝto-balgoj.[9][10]

Loupe.svg Pli detalaj informoj troveblas en la artikolo Romia metalurgio.

Metaloj kaj metalurgio estis konataj de la popolo de la teritorio kie nun estas la moderna Italio ekde la Bronzepoko. Ĉirkaŭ la 86 a.K., Romo jam estis etendinta sian kontrolon al la enorma regiono de la Mediteraneo. Tio inkludis naŭ provincojn radie el Italio al ties insuloj, Hispania, Macedonia, Africa, Asia Minor, Syria kaj Grekio, kaj je la fino de la regado de la imperiestro Konstantino, la Romia Imperio estis kreskinta ĝis enhavi partojn de Britio, Egipto, la tuto el la moderna Germanio okcidente de la rivero Rejno, Dakio, Noricum, Judujo, Armenio, Ilirio kaj Trakio. Same kiel kreskis la imperio, tiele faris neceso por metaloj.

Libro de la 16a jarcento de Georgius Agricola nome De re metallica priskribas la tre disvolvigitan kaj kompleksajn procezojn minadi metalajn ercojn, metalan elprenadon kaj tiaman metalurgion. Agricola estis priskribita kiel "patro de metalurgio".[11]

Elprenado[redakti | redakti fonton]

Fornaj balgoj funkciantaj fare de akvoradoj, Dinastio Yuan, Ĉinio.
Aluminia fabriko en Žiar nad Hronom (Centra Slovakio)
Loupe.svg Pli detalaj informoj troveblas en la artikolo Elprena metalurgio.

Elprena metalurgio estas la praktiko elprodukti valorajn metaloj el erco kaj rafini la elprenitajn krudajn metalojn en pli pura formo. Por konverti metalajn oksidonsulfidon en pli pura metalo, la erco devas esti reduktita fizike, kemie, aŭ elektrolize.

Elprenaj metalurgiistoj estas interesataj en tri ĉefaj branĉoj: nutrado, koncentrado (valora metalo oksido/sulfido), kaj amasigado de rubo. Post minado, grandaj pecoj de erco alportitaj (nutrado) estas rompitaj pere de premado kaj/aŭ muelado por akiri partiklojn sufiĉe malgrandajn kie ĉiu partiklo estas ĉu plej valora aŭ plej malvalora. Koncentri la partiklojn valorajn en formo kiu permesas separadon havigas la deziritan metalon kiu estu elprenita el la rubaj produktoj.

Minado povas ne esti necesa se la erco kaj la fizika medio estas kondukaj al surloka perkolado. Perkolado dissolvas mineralojn el la erco kaj rezultas en riĉa solvaĵo. La solvaĵo estas kolektita kaj procezata por elpreni valorajn metalojn.

Ercaĵoj ofte enhavas pli ol unu valora metalo. Rubaĵoj de antaŭa procezo povas esti uzata kiel nutraĵo por alia procezo por elpreni duarangan produkton el la origina ercaĵo. Aldone, koncentraĵo povas enhavi pli ol unu valora metalo. Tiu koncentraĵo estu tiuokaze procezata por separi la valorajn metalojn en unuopaj konstituantoj.

Alojoj[redakti | redakti fonton]

Bronzofandado.

Plej ofta inĝenierado de metaloj estas de aluminio, kromio, kupro, fero, magnezio, nikelo, titano kaj zinko. Tiuj estas plej ofte uzataj kiel alojoj. Multa peno estis dediĉita al kompreno de la fer-karbo alojsistemo, kiu inkludas ŝtalojn kaj gisfero. Plenaj karboŝtaloj (tiuj kiuj enhavas esence nur karbon kiel aloja elemento) estas uzataj en malmultekostaj, altfortaj aplikaĵoj kie pezo kaj korodo ne estas problemo. Gisferoj, inklude duktila gisfero, estas ankaŭ parto de le fer-karba sistemo.

Rustorezista ŝtalogalvanizita ŝtalo estas uzataj kie gravas rezisto al korodo. Aluminiaj alojoj kaj magneziaj alojoj estas uzataj por aplilaĵoj kie oni postulas forton kaj malpezon.

Kupro-nikelaj alojoj (kiaj monelo) estas uzata en tre korodaj medioj kaj por ne-magnetaj aplikaĵoj. Nikel-bazitaj superalojoj kiel inkonelo estas uzata en alta-temperaturaj aplikaĵoj kiaj gasturbinoj, turbinkompresoroj, premujoj, kaj varmointerŝanĝilo. Por tre altaj temperaturoj, alojoj de unukristalo estas uzataj por malgrandigi disformigon.

Produktado[redakti | redakti fonton]

Laborprocezoj[redakti | redakti fonton]

Metalfarado aŭ metallaborado estas la procezo laboradi kun metaloj por krei unuopajn partojn, kunmetaĵojn aŭ grandskalajn strukturojn. La termino kovras ampleksan gamon de laboroj el grandaj ŝipoj kaj pontoj al precizaj maŝino-partojn kaj delikatan juvelarton. Ĝi tiele inkludas korespondan ampleksan gamon de lertecoj, procezoj kaj iloj.

Plidurigo, plimalmoligo, plifortigo, laborfortigo, konata ankaŭ kiel premofortigo aŭ malvarma laborado, estas la plifortigo de metalo fare per plastika deformigo.

Varmigo, en metalurgio kaj scienco pri materialoj, estas varmotraktado kiu ŝanĝas la fizikajn kaj foje la kemiajn proprecojn de materialo por pliigi ties duktilecon kaj malpliigi ties durecon, farante ĝin pli laborebla. Ĝi postulas plivarmigon de materialo super ties rekristaliga temperaturo, tenante ĝin laŭ taŭga temperaturo, kaj poste malvarmigante ĝin. En varmigo, atomoj migras en la kristala strukturo kaj la nombro de delokigoj malpliiĝas, konduke al la ŝanĝo en duktileco kaj en dureco. Ĉe la kazoj de kupro, ŝtalo, arĝento, kaj latuno, tiu procezo estas plenumita per varmigo de la materialo (ĝenerale ĝis brilruĝo) dum momento kaj poste malrapide lasanta ĝin malvarmiĝis al la etosa temperaturo en trankvila aero.

Fandado.- Kristalaj substancoj fandiĝas post ioma ripoztempo ĉe la fandopunkta temperaturo. La kialo estas la energia diferenco inter la kristala kaj la likva statoj. Ĉar la kristalstrukturo signifas pli malaltan energetikan staton ol la fandaĵo, tiel la energia diferenco "absorbiĝas" ĉe la fandiĝo. Tial la amorfaj bazmaterialoj kiel ekzemple plastoj havas transiran temperaturon kaj neniun ripoztempon dum la fandiĝo.

Metalmuldado estas metalfanda procezo kiu estas karacterizita per perfortigo de fandita metalo je alta premo en muldilo. Tiu muldujo estas kreita uzante du plifortigitajn iloŝtalajn pecojn kiuj estis maŝinitaj en formo kaj laboro simile al injektomuldado dum la procezo. Plej metalmuldiloj estas faritaj el neferaj metaloj, specife el alojoj bazitaj en zinko, kupro, aluminio, magnezio, plumbo, plumbostano kaj stano. Depende el la tipo de metalo fandota, oni uzas ĉambromaŝinon ĉu varman ĉu malvarman.

Hardadometalhardado estas en la metalurgio unu el tuta gamo da procedoj, per kiuj oni prilaboras la internan strukturon de (ĉefe feraj) metaloj, por akiri deziratajn ecojn rilate al eksteraj mekanikaj strenoj. Ekzemplas pli altgrada rezistemo kontraŭ tro rapida foruziĝo, kontraŭ fleksado, premado, tordado. La procedoj efektiviĝas per varmo, kemiaj substancoj aŭ kombinoj el ambaŭ. La diferencon inter la strukturoj eblas bildigi per la ekzemplo de grafito kaj diamanto, kiuj konsistas ambaŭ el pura karbono. Ofte miskomprenita estas la koncepto de pligranda hardeco de laborpeco post malvarma transformigo (ekz. martelado, laminatado). Tio estas subranga kaj ofte eĉ nedezirata, ĉar por sekvaj procedoj damaĝa efekto.

Elektrolamenado estas procezo kiu uzas elektran kurenton por redoksi dissolvitan metalajn katjonojn por ke ili formu koheran metaltavolon sur elektrodo. La termino estas uzata ankaŭ por elektra oksidado de anjonojn en solida subtavolo, kiel en la formado de arĝenta klorido en arĝenta kablo por fari arĝent/arĝent-kloridajn elektrodojn. Elektrolamenado estas ĉefe uzata por ŝanĝi la surfacajn proprecojn de objekto (ekz. abrazio kaj kontraŭ eluza rezistado, korodo protektado, lubrikeco, estetikaj kvalitoj ktp.), sed povas esti uzata ankaŭ por konstrui dikecon sur malgrandaj partoj aŭ por formo objektojn per elektroformado.

Pulvormetalurgio estas termino kiu kovras ampleksan gamon de manieroj en kiuj materialoj aŭ komponantoj estas farataj el metalaj pulvoroj. PM procezoj povas eviti, aŭ ege malpliigi, la neceson uzi forigon de procezitaj metaloj, tiele draste malpliigante perdojn en fabrikado kaj ofte rezulte en pli malaltaj kostoj.

Vidu ankaŭ[redakti | redakti fonton]

Notoj[redakti | redakti fonton]

  1. "Металлургия". en La Granda Sovetia Enciklopedio. 1979.
  2. 2,0 2,1 Oxford English Dictionary, alirita la 29an de Januaro 2011
  3. History of Gold. Alirita 2007-02-04.
  4. E. Photos, E. (2010). "The Question of Meteoritic versus Smelted Nickel-Rich Iron: Archaeological Evidence and Experimental Results", gazeto : World Archaeology, volumo : 20, numero : 3, paĝoj : 403. COI:10.1080/00438243.1989.9980081  
  5. 5,0 5,1 W. Keller (1963) The Bible as History. p. 156. ISBN 0-340-00312-X
  6. (2010) "On the origins of extractive metallurgy: New evidence from Europe", gazeto : Journal of Archaeological Science, volumo : 37, numero : 11, paĝoj : 2775. COI:10.1016/j.jas.2010.06.012  
  7. Neolithic Vinca was a metallurgical culture Stonepages from news sources November 2007
  8. B. W. Anderson (1975) The Living World of the Old Testament, p. 154, ISBN 0-582-48598-3
  9. R. F. Tylecote (1992) A History of Metallurgy ISBN 0-901462-88-8
  10. Robert K.G. Temple (2007). The Genius of China: 3,000 Years of Science, Discovery, and Invention (3a eldono). London: André Deutsch. pp. 44–56. ISBN 978-0-233-00202-6.
  11. Karl Alfred von Zittel. (1901). History of Geology and Palaeontology. COI:10.5962/bhl.title.33301. 

Bibliografio[redakti | redakti fonton]

En angla[redakti | redakti fonton]

  • Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2003), Materials and Processes in Manufacturing (9th ed.), Wiley, ISBN 0-471-65653-4.
  • Oberg, E.; et al. (1996), Machinery's Handbook (25a eld.), Industrial Press Inc, ISBN 0-8311-2599-3.
  • Smith, William F.; Hashemi, Javad (2006), Foundations of Materials Science and Engineering (4a eld.), McGraw-Hill, ISBN 0-07-295358-6.

En germana[redakti | redakti fonton]

  • Hermann Ost: Lehrbuch der chemischen Technologie. 21., von B. Rassow bearbeitete Auflage, Jänecke Verlag, Leipzig 1939. (Kapitel „Metallurgie“).
  • Alfred von Zeerleder: Über Technologie der Leichtmetalle. 2. Auflage. Verlag des Akademischen Maschinen-Ingenieur-Vereins an der E. T. H. Zürich, 1951.
  • Hans Schmidt: Das Gießereiwesen in gemeinfasslicher Darstellung. 3., umgearb. u. erw. Aufl. Gießerei-Verlag, Düsseldorf 1953.
  • Hans Riedelbauch: Partie- und Chargenfertigung in betriebswirtschaftlicher Sicht. In: ZfhF – Zeitschrift für handelswissenschaftliche Forschung. Westdeutscher Verlag, Köln u. a., Heft 9, 1959, S. 532–553.
  • Ernst Brunhuber: Schmelz- und Legierungstechnik von Kupferwerkstoffen. 2., neubearb. Aufl. Schiele & Schön Verlag, Berlin 1968.
  • Gesamtverband Deutscher Metallgiessereien (Hrsg.): Guss aus Kupfer und Kupferlegierungen, Technische Richtlinien. Düsseldorf / Berlin 1982, DNB 821020889 .
  • DKI-Workshop. Deutsches Kupfer-Institut, Berlin. (Schriftenreihe; Tagungsbände – unter anderem 1993, 1995).
  • Hans Joachim Müller: Handbuch der Schmelz- und Legierungspraxis für Leichtmetalle, Schiele & Schön, Berlin 1977, ISBN 3 7949 0247 5.

Eksteraj ligiloj[redakti | redakti fonton]